路由交换与技术实习总结(必备二十篇)_路由交换与技术实习总结
发布时间:2024-11-11路由交换与技术实习总结(必备二十篇)。
〚1〛路由交换与技术实习总结
USB方便实用,已经是现在使用电脑的人们必不可少的配备之一,它的最大的优点就是可移动性,进行方便的存储携带。那么大家有没有听说过无线USB呢?它是不是也同样具有方便使用的特点呢?
USB(universal serial bus,通用串行总线)作为一个计算机与外设之间的接口方案,因其具有使用方便、传输速度快、端口易扩展等特点,已经逐步扩展应用到了消费电子、移动通信、家庭网络、工业控制以及仪器仪表等诸多领域。
为了适应各领域对数据传输和接口技术的需要,USB技术的标准从1.0发展到了2.O,数据传输的速率也从最初的1.5Mbit/s提高到了480Mbit/s。在传输速度大幅度提高的同时,USB更是紧跟通信技术的无线化趋势,将传统基于线缆的USB扩展为基于无线传输平台的无线USB(wireless USB)。这种新的高速无线个人互连技术,在继承传统有线USB 2.0标准所具有的较高传输速率优势的同时,充分利用无线传输技术的灵活性与极高的自由度,免除了有线USB需要线缆连接所带来的各种麻烦,为互连设备提供了更大的便利性与可移动性。本文介绍的就是5月底刚刚通过标准的无线USB技术以及它在相关领域的具体应用。
无线USB促进组织(Wireless USB Promoter Group)是无线USB标准的制定机构。该组织成立于20初,由英特尔(Intel)发起,成员包括了杰尔系统(Agere Systems)、惠普(Hewlett Packard)、微软(Mircosoft)、NEC、飞利浦半导体(Philips Semiconductor)和三星(Samsung)这几家业界领先的公司,
由于无线USB促进组织所制定的无线USB标准只涉及到较高层次协议规范的制定,物理层和MAC(media access control,媒体访问控制)层则采用了由MBOA(MultiBand OFDM Alliance,正交频分多路复用联盟)和WiMedia联盟(Wireless Multimedia Alliance,无线多媒体联盟)共同制定的UWB(ultra wideband,超宽带)无线标准,因此,这两家旨在推动个人无线领域互连互通的国际标准制定组织对无线USB技术的发展也起了极大的推动作用。
在这些直接或间接影响无线USB标准制定的组织积极作用之下,从2004年初到205月,短短一年多时间内,无线USB标准经历了数十次的修改、扩充、讨论与完善。在年5月24日的无线USB开发者大会上,无线USB促进组织宣布,无线USB标准1.0修订版的制定工作已经完成,现在通过的标准已经移交给USB实施论坛(USB-Implementers Forum),由后者承担无线USB标准的认证、兼容测试、标志许可以及营销工作。
新近通过的这个无线USB标准以MBOA和Wi-Media联盟的超宽带MAC层和物理层为基础,在WiMedia通用无线平台上提供较高层的协议综合,在3m范围内提供高达480Mbit/s的传输速度,10m范围内的传输速度也可达到110Mbit/s。
〚2〛路由交换与技术实习总结
【摘要】网络编码可以优化网络传输的性能,网络编码的基本思想是网络节点不仅对数据进行存储转发,还参与数据处理。网络编码的出现更迎合了无线网络技术的发展,本文关注了网络编码在无线网络中的研究和应用,初步探讨了面对网络编码,我们应采取和研究的信息安全措施,同时提出了针对网络编码应着力解决的研究问题以及无线网络技术如何依靠网络编码进行安全有效的信息交换,并对其发展进行了展望。
在传统的计算机网络数据传输过程中,要借助路由器进行数据传递,根据数据的目标地址,路由器将数据包向各个链路发送。由于没有统一的安排和协调,在同一链路中会出现很多数据包,必须排队等待通过的情况,这就制约了计算机网络的传输速度和效率的提升。,新型网络编码技术一经出现就得到了广泛关注。网络编码技术着力解决的问题是有效地将同时到达路由器的数据同时发送出去,不让数据产生拥塞,从而提高数据传输速度。
网络编码是一种融合了路由和编码的信息交换技术,它的核心思想是在网络中的各个节点上对各条信道上收到的信息进行线性或者非线性的处理,然后转发给下游节点,中间节点扮演着编码器或信号处理器的角色。
网络编码融合了路由和编码的概念,使网络节点不仅可以对数据进行存储转发,还可以进行编码处理,已证明了使用线性网络编码已经能足够达到网络多播容量。但网络编码的好处不止这些,尤其是当网络编码应用于无线网络时。网络编码首先应被应用在无线网络环境。无线网络的特性是不可靠性和广播特性,使网络编码非常适合应用在无线网络上,因为无线链路的不可靠性和物理层广播特性非常适合使用编码的方法。应用网络编码,可以解决传统路由、跨层设计等技术无法解决的问题,提高网络编码在无线网络中的应用。无线网络的广播特性使其非常适合使用网络编码,当一个节点传输一个数据包给它的一个邻居节点时,它的其它邻居节点也可以接收到这个数据包。因此,当一个节点的邻居节点对不同的数据包感兴趣时,可以将这些数据包编码后再一起传输,这样子可以使其所有的邻居节点都收到感兴趣的数据包并可以节约无线资源。
应用网络编码,可以解决传统路由、跨层设计等技术无法解决的问题,提高网络性能。网络编码在无线网络中的应用可以提高网络的吞吐量,尤其是组播吞吐量。可以减少数据包的传播次数,降低无线发送能耗。当网络部分节点或链路失效时采用随机网络编码,最终在目的节点仍然能恢复原始数据,增强网络的容错性和鲁棒性。网络编码对无线网络的性能改善主要体现在提高网络编码的吞吐量上,网络编码已经被证明对于提高某些网络的吞吐量有着很大的作用。运用网络编码可以在很大程度上提高网络吞吐量,但是同时会增加网络的复杂性。不少研究者在研究提高无线网络的组播吞吐量的同时,研究如何降低因采用网络编码带来的复杂性。在网络状况恶劣的条件下,网络编码和路由之间组播吞吐量的差别不大,网络编码的优势体现在降低网络复杂性上;在网络状况较好的条件下,网络编码相对于路由方法,在很大程度上,提高了组播吞吐量。这为根据网络状况动态调整网络编码算法提供了可能。
网络编码在提高无线网络的安全性研究方面亦取得了一定的成果。在无线网络组播中,对于数据包的恶意修改的检测,过去是使用基于消息认证码或者数字签名的方法。基于网络编码产生了一种基于数据包的随机网络编码检测策略,这种方法计算量小,而且检测概率可以根据通信控制开销、网络编码复杂程度和检测时间这些因素进行调控。但这种方法亦存在不足。这种方法要求接收节点需要预先获得至少一个没有被恶意修改过的数据包,并且数据包的内容不能被攻击者知晓,因此,这种方法对抗攻击效果不好。
无线网络广播重传处理中,多个接收节点中的任意一个节点的丢包都要求源节点重传数据包,需要广播发送较多的重传次数.本文将随机线性网络编码技术应用在无线网络广播重传中,提出一种新颖的广播重传方法(RLNCBR)。该方法中,源节点记录多个接收节点中丢包最多的接收节点丢包数,再按照随机线性网络编码的方法编码组合该丢包数个线性编码包。源节点广播重传,接收节点采用运算编码线性组合的方法获得信息包数据。数学分析表明,该方法能保证所有接收节点的编码可解性,同时重传次数可达到理论最优性。模拟测试结果表明:与传统重传方法相比,RLNCBR有效地减少了信息包的平均传输次数,提高了传输效率。
网络编码正在给现有的.网络带来革命性的变化:网络编码从用来达到有线网络中的组播容量,发展到在有线和无线网络中提高吞吐量、节省能量、增强鲁棒性和安全性,甚至改变网络结构、改变网络协议设计方法。网络编码在无线网络中的应用还存在着以下的几个问题:网络编码的具体实现和降低网络编码的复杂性。现在已经提出了很多网络编码方法,有集中式线性网络编码和分布式随机网络编码,但是如何在实际网络环境中实现网络编码,需要考虑许多实际应用问题,例如同步、控制开销等。网络编码在实际网络环境中如何实现是一个很迫切的问题。采用网络编码可以在很大程度上提高网络性能,但设计和实现上的复杂性也随之增加。如何在不显著增加网络开销,综合考虑效率和性能的前提下,实现网络编码问题是将来需要进行深入研究的方向。
无线网络环境由于环境的多变性,使得数据包在传输过程中更加容易丢失。目前,重传常被用来实现无线广播的错误处理,普通重传方法思想基于发送方通过反馈得到接收方的出错情况,重传出错的数据报文来恢复出错的报文。:
网络编码技术是近十年来飞速发展的一个研究课题。虽然还没有应用到实际的通信网络中,但已引起了较大的关注,比如美国军方已经意识到网络编码技术的优势,已经拨款研究网络编码技术在移动自组网(MobileAdHocNetwork)中的应用。因此,我们也应当及时跟踪国际上的网络编码技术的发展趋势。同时,结合各种应用深入思考网络所涉及的各种安全技术问题。
[1]范明,盂小峰.数据挖掘概念与技术[M].机械工业出社,.8.
[2]胡国强.数据挖掘在远程教育决策支持系统的运用[J].开放教育研究,,(5)44-45.
[3]YEUNGRW,ZHANGZ.Distributedsourcecodingforsatellitecommunications[J].IEEETransactionsonInformationTheory,,45(3):1111-1120.
[4]沈逸.多媒体教学应用与CAI的比较研究[J].开放教育研究,1995(5):20~22.
[5]朱绍祖.多媒体技术在教学中的应用探讨[J].中国医学教育技术,2003,8(4):218~220.
〚3〛路由交换与技术实习总结
随着WDM传送技术的高速发展和WDM联网技术的日益成熟,业务提供商正在面临着一个新的问题:如何以较高的性价比来有效地管理数量不断增加的波长,以便他们能为终端用户提供快速可靠的通信服务,同时当前数据业务不可预测的流量模型要求一个更加智能化的光纤核心网络以提供良好的扩展能力,灵活的选路和链路配置、保护恢复和高效的网管,自动交换光网络(ASON)正是在这种背景下应运而生。ASON是一种能够自动完成网络连接的新型网络。他由控制面、传送面和管理面3个平面组成。控制面技术是其核心,利用控制面能够实施动态交换。一些协议如GMPLS正在逐渐的应用到ASON控制面中来。控制面的主要功能包括信令和路由。本文主要就ASON的信令控制方式进行探讨和研究。
只有大量可用波长还谈不上就形成了光联网技术。一个完整的光网络还必须包括监控、管理和信令交互等功能。光网络的处理对象主要是光载波,因此对于客户信号的传送、复用、选路和监视等处理主要都是在光域进行。由于光传送网协议的透明性,在一个子网中可能存在多种形式的协议流,所以光传送网需要有自己的管理信息结构和开销方案,同时基于光域特定的开销方案也需要有相应的信令控制方式,可以选择多种控制方式来进行控制。
在波长数量较多,波长资源丰富的情况下,最容易想到的就是采用专门的波长作为独立信令通道,也就是独立控制信道方式。他又有两种可能的形式:纤内和纤外,两者都属于共路形式。
最常见的就是采用光监控信道(OSC)来传递控制信息。为了能对控制信息进行处理,在目前全光处理技术还不成熟的情况下需要进行光电转换和电光转换。独立控制信道方式的结构示意图如图1所示。入纤通过波分解复用器,分离出单独的控制波长作为信令通路。在此通路上,MPLS/GMPLS节点可以发送和接受标签分布协议(LDP)或者资源预留协议(RSVP)等信令信息。在本地进行了电光转换后,通过对信令信息的处理,获取路由和控制信息进而控制波长交换矩阵对数据波长进行交换选择,从而完成光通道的建节点进行交互,或者本地节点有新的路由请求产生等,节点还必须把新的信令信息进行电光转换,调制信道控制波长并与其他数据波长一同经过复用后由出纤再进行传输。
screen.width-333)this.width=screen.width-333“>
纤外控制信道方式工作方式与前面描述的纤内独立控制信道方式基本类似,略有不同。他采用纤外方式,控制信道在与数据通道完全独立的载体上传输,比如可以以电的形式或者是单独的光纤。他的最大好处是安全性高,能完全满足光网络对信令网的要求。在数据通路光纤失效的情况下控制通路不受影响,仍然可以安全的发布告警信息和进行光路的保护与恢复信令传输,确保数据的完整传输。然而他的坏处也显而易见:任何光网络和控制网络拓扑上的差异都会严重影响LSP的选路和恢复过程。
在波长数目较少,波长资源不丰富的情况下,单独开辟一个通道就显得比较浪费。更加有效的方案是将波长带宽资源的一部分用来传输MPLS/GMPLS信令,剩下的部分传输数据净负荷。这也就是图2所示的嵌入式控制信道方式。入纤通过波分解复用器,分离出控制/数据波长和其他数据波长。控制/数据波长在经过O-E转换后,分离成信令信息和数据负荷信息并通过数据负荷中的控制信息对数据净负荷部分进行标签处理、路由和转发。同时分离出的信令信息通过波长交换矩阵为其他的数据波长通道进行交换,建立光通路。这种方式仍然需要O-E和E-O转换,数据净负荷信息包需要电的标签处理过程。因为需要将控制部分从数据包中分离出来,数据流的连续性会受到一定的影响,此外对通道进行O-E转换还会给LSP带来额外的延迟。他的最大好处就是波长利用率高。
第3种方案是如图3所示的副载波复用技术(SCM)。SCM的通道带宽理论上可以达到Mb/s的量级,这对MPLS/GMPLS信令需求来说已经可以满足。他的工作过程如下:入纤在经过解复用器后,分解成N个工作波长,他们在接入到波长交换矩阵的同时也接入到副载波调制信道并首先对其进行副载波提取,然后对提取到的信令信息进行处理,控制相应的接入到光交换矩阵的波长通道通过OXC进行波长交换和光通路建立,最后把本地的信令信息进行副载波调制并插入到相应的数据波长中,然后经过复用器复用至出纤中进行传输。
screen.width-333)this.width=screen.width-333”>
screen.width-333)this.width=screen.width-333“>
至今已采用的或提议的实现OCH-OH的方法有3种:
(1)光监视通路(OSC),
(2)数字“包封器”(Digital“Wrapper”)。
(3)副载波调制(SCM)。
分别对应于前面所讨论的3种信令控制方式。他们各有优缺点。其中OSC方式属于共路方式,数字包封技术和SCM属随路。这里主要比较一下后两者的性能,如表1所示。从中可以发现采用数字包封技术具有更好的性能。
随着WDM技术的日新月异,单纤容纳的波长数已经有160波分的投入商用,实验室的测试已经有上千波长的成功报道,波长资源相对丰富。可以设想,光纤网络将会向多纤、高复用度发展,波长资源相应变得丰富,那么前面提到的独立控制信道方式将会获得更多的应用。结合目前热门的ASON技术,分析和综合前面提到的几种信令控制方式,提出了一种新的混合信道控制方式:默认波长和专用控制信道相结合的方式。他可以通过结合共路OSC和随路数字包封技术18来实现。他既可以采用控制信道与数据通道分离的形式,控制信令主要通过带外信道来传输从而确保可靠性;也支持默认波长同时传输数据和信令的方式。在默认波长的方式下,节点要传输数据时首先采用默认波长传输,当数据到达IP引擎时,将在进行转发的同时,进行巨量流判别,如果判定是巨量流,将调用波长分配协议,指定并建立起相应的光路,同时通知节点把数据全部转移到已经建立的通路上直接传输,而不再进行路由判别与转发,实现直通传输,否则仍然采用默认波长进行转发。在传输完毕后IP引擎拆除光路。在这种方式下,最大的好处就是这个默认波长同时传输信令和数据。在专用控制信道方式下,节点首先通过专用控制信道发起连接请求。GMPLS控制平面在响应连接请求后建立相应的光路,之后返回一个确认信息到发起的节点,从而节点可以传输数据,在传输完毕后,发出一个拆除链路的请求,完成释放链路的工作。采用这种综合设计的方式有明显的好处:首先保证了控制信道的强壮性,即使默认波长信道出现拥塞,或者信道损坏的情况下还可以采用专用信道,反之亦然。
screen.width-333)this.width=screen.width-333”>
合信道控制方式示意图如图4所示。工作过程如下:
(1)发端节点如有数据需要发送,首先加载到默认波长上。
(2)然后被所经过的最短路径上的IP路由器逐跳存储/转发。
(3)IP路由引擎根据到来流进行判别,一旦被判定为一个持续时间长的巨量流,就尽量为其分配一个专用的波长通道或者虚波长通道。
(4)一旦分配成功,建立了一跳直通光路,则通过专用控制信道通知上游节点,将数据直接转移到已经建立的直通光路上进行发送,从而中间节点无需再进行转发处理。
(5)在传输完毕时,上游节点通过专用信道发起拆线请求,拆除前面建立的光路,完成本次传输。
(6)由于所有长数据流的起始部分以及所有的短数据流和所有的控制信息都要通过缺省波长以存储转发方式一跳接一跳地转发到目的节点,当网络的业务量较大并且以短数据流为主时,由于大部分业务量都通过缺省波长传输而其他多数波长空闲,从而导致网络拥塞以及时延性能变差时,GMPLS控制平面监测到这一情况,将后面的部分信令传输改用专用控制信道进行传输。
(7)上游节点通过专用信道发出请求,GMPLS控制平面在响应连接请求后建立相应的光路,之后返回一个确认信息到发起的节点,从而节点可以传输数据,在传输完毕后,发出一个拆除链路的请求,完成释放链路的工作。
(8)另外在独立控制信道为纤外的情况下,如果默认控制/数据波长光纤出现故障时,可以迅速通过前外控制信道进行告警和快速恢复。
screen.width-333)this.width=screen.width-333“>
GMPLS实际上就是把各自的不同层次的控制面使用统一的信令和协议统一起来,方便不同技术背景的设备使用统一的控制管理接口来互连互通。在这里使用GMPLS系列协议进行控制信令的交互。连通域间和域内控制平面,实现统一的控制。他们之间的信令流程图如图5所示。可以看出,设计的控制信令方式很好地满足了ASON的控制平面需要。通过信令控制方式控制平面可以实现GMPLS管理、路由、路径计算、信令、邻居发现和链路管理等,其中在信令当中主要考虑带GMPLS扩展的RSVP(当然也可以采用带扩展的CR-LDP)。
screen.width-333)this.width=screen.width-333”>
本文在总结和比较已有的3种信令控制技术的基础上,提出了一种新的信令控制技术,并采用他较好地满足了自动交换光网络的控制面设计和信令网要求。此信令控制方式结合了共路和随路传送的优点,采用了默认波长和专用波长相结合的方式,有助于光信道层的带宽管理、动态维护和在光域上提供保护、恢复能力,并增加网络的存活性
〚4〛路由交换与技术实习总结
WUSB的基本连接原理是网络集线器和拓扑,如图所示,在所有的通过主机传输的数据,都会连接上WUSB Host(WUSB主机),然后分配给每个设备不同的地址和带宽,这些设备和主机之间的关系被称为群。它们是通过点对点来传输的,WUSB主机和WUSB设备之间定向的传输。
一、无线USB是用来连接一些外围设置而推出的技术,比如打印机、外置式硬盘、声卡、媒体播放器甚至可以实现无线视频播放。你可以通过两种方式实现这种应用。如果你的PC或者是相关设备并不支持无线USB技术,那么你就必须安装一个WUSBdongle将标准的USB接口变成WUSB接口。不过如果相关设备是原生支持WUSB的,那么在产品上你将会看到WUSB天线。根据介绍,通过单一的天线可以最多同时边接127个外围设备。
二、WUSB最高理论传输速度与USB2.0接口相同都为480Mbps(60MB/s),不过这个速度与距离有关。如果设备距离PC在3m之内就可以实现理论传输。面如果距离超过了10m,那么传输速度将只有110Mbps(13.75MB/s),
可以说距离越远,传输速率就越低,WUSB运行于UWB频宽(3.1GHz-10.6GHz),而无线蓝牙的频率为2.4GHz,与IEEE802.11无线网络相同。
三、如果你的PC不支持WUSB,那么你就需要购买一个WUSBdongle,方法就是使用WUSBhub,通过WUSB可以让PC与显示器的连接不再需要通过连接线来完成,通过适配器可以使得PC以无线的方式与显示器进行连接,
四、蓝牙技术也可以实现两款设备间的无线数据传输。不过蓝牙技术主要面向的是一些低速设备,其最高传输速率只有1Mbps(128KB/s)或者3Mbps(384MB/s),这主要取决于是蓝牙是一代蓝牙还是二代蓝牙。不过据了解下一代的蓝牙技术的传输速率将会与WUSB持平,不过这项技术目前还没有推出。
五、在小环境中发挥大容量设备的访问能力,是多种WUSB设备共存时急需解决的问题,这样才能有效利用带宽。可能会发生的一种情况是,在一个有限的范围内,多种的WUSB设备,通过很多通道同时传输数据。这样,拓扑会在这个区域内决定支持多少设备。
WUSB技术在技术规格的制订上,也会依靠MBOA联盟和WiMedia联盟。这是两个开放的技术联盟,将会使WSUB技术在网络环境中,个人在多媒体设备间的无线交流的连通性和协同性加强,到时我们就可以无线路由器进行各种家用电器之间的连接。
〚5〛路由交换与技术实习总结
每个应届毕业生在学校毕业前都需要进行毕业实习,以下是由中国人才网归纳总结的一篇实习鉴定范文,提供给写实习鉴定时参考所用。更多实习材料尽在shixi/
读了三年的大学,然而大多数人对本专业的认识还是寥寥无几,在测控技术与仪器周围缠绕不定,在大二期末学院曾为我们组织了一个星期的见习,但由于当时所学知识涉及本专业知识不多,所看到的东西与本专业根本就很难联系起来,在很多同学心里面对于本专业一直很茫然。
什么是测控技术与仪器?本专业适合干哪方面的工作?本专业前途如何?带着这些问题,我们参加了这次的生产实习。
本次生产实习由查晓春、黄爱华和黎勉三个老师带领,测控专业总共四个班,150几人参加实习。6月30日出发去顺德,安住在顺德大良风城中学。
三年来第一次来到一个陌生的地方,真是一件令人兴奋的事情,我们住的中学环境很好,由于这是一所中学,又遇暑假,这里很静,真是学习的好地方,本人正好想在实习之余顺便的进行自己的网络工程师计划,这样可以让时间滴水不漏了。
两个星期的生产实习,我们去过了申菱空调设备有限公司、顺特电气有限公司、美的洗碗机公司、联塑科技实业有限公司、广东泓利机器有限公司、顺德科威电子有限公司、广东锻压机床厂等大型工厂,了解这些工厂的生产情况,与本专业有关的各种知识,各厂工人的工作情况等等。第一次亲身感受了所学知识与实际的应用,传感器在空调设备的应用了,电子技术在电子工业的应用了,精密机械制造在机器制造的应用了,等等理论与实际的相结合,让我们大开眼界。也是对以前所学知识的一个初审吧!这次生产实习对于我们以后学习、找工作也真是受益菲浅,在短短的两个星期中让我们初步让理性回到感性的重新认识,也让我们初步的认识这个社会,对于以后做人所应把握的方向也有所启发!
顺德是个美丽的地方,这里的交通路线四通八达,或许这就是顺德为什么一直保持全国百强县之首的原因吧!当然还有其体制是否健全原因,社会保障是否完善原因!这里也是我们初涉社会的开端,迈向美好而残酷的未来,我一直坚信自己的能力,即使人生路如顺德四通八达的公路,但方向只有一个,那就是前进,永不言弃,永不退缩!
申菱空调设备有限公司
7月1日,这是我们实习的第一天,我们来到了申菱,这是一家生产中央空调的厂家。来到该厂,
〚6〛路由交换与技术实习总结
本文详细的向大家介绍了华为路由器虚接口的用法以及类型,并且给出了loopback接口,NULL接口等内容介绍,希望此文对你认识虚接口能有所帮助,
通常,在路由器中执行show running命令查看配置时,会发现配置中存在各种类型的接口,例如ethernet、ATM、Serial、POS等等,这些接口都是与实际的物理接口是一一对应的(如果存在子接口,则可能会使多个接口名称对应同一个物理接口)。但在路由器中还存在着另外一类完全不同 的接口类型,例如:loopback、null、tunnel、virtual-template 等等,这一类接口有如下几个共同点:
1.不存在与该接口对应的真实物理接口;虽然有时会存在一定的“映射”关系;
2.由于第一条的原因,此类接口不会依据物理接口自动生成,必须根据实际需要手工创建。
3.接口的状态永远是UP的(包括物理状态UP和协议状态UP),不会DOWN掉,其中Tunnel 接口除外,该接口的物理状态永远UP,但协议状态视实际运行状况而定。
由于具有以上几点共性,此类接口被统称为“虚接口”,不同的虚接口各自有不同的用法,下文将分别介绍。
此类接口是应用最为广泛的一种虚接口,几乎在每台路由器上都会使用。常见于如下用途。
系统管理员完成网络规划之后,为了方便管理,会为每一台路由器创建一个loopback 接口,并在该接口上单独指定一个IP 地址作为管理地址,管理员会使用该地址对路由器远程登录(telnet),该地址实际上起到了类似设备名称一类的功能。
但是通常每台路由器上存在众多接口和地址,为何不从当中随便挑选一个呢?原因如下:由于telnet命令使用TCP报文,会存在如下情况:路由器的某一个接口由于故障down 掉了,但是其他的接口却仍旧可以telnet,也就是说,到达这台路由器的TCP连接依旧存在。所以选择的telnet地址必须是永远也不会down掉的,而虚接口恰好满足此类要求,
由于此类接口没有与对端互联互通的需求,所以为了节约地址资源,loopback 接口的地址通常指定为32 位掩码。
使用该接口地址作为动态路由协议OSPF、BGP的router id。
动态路由协议OSPF、BGP在运行过程中需要为该协议指定一个Router id,作为此路由器的唯一标识,并要求在整个自治系统内唯一。由于router id是一个32位的无符号整数,这一点与IP地址十分相像。而且IP地址是不会出现重复现象的,所以通常将路由器的router id指定为与该设备上的某个接口的地址相同。由于loopback接口的IP地址通常被视为路由器的标识,所以也就成了router id的最佳选择。
通常任何接口都会分配一个IP地址,但是NULL接口却是一个例外,你无法在NULL接口上配置IP地址,路由器会提示配置非法。一个没有IP地址的接口能够做什么用呢?此类接口单独使用没有意义,但是如果将配置的静态路由下一跳指向NULL接口,则会有很大的用处。
BGP路由协议向外发布路由的一种方法是使用命令:
但是此命令正确生效有一个前提:在路由表中必须存在一条与ip-address mask 完全相同的路由。由于BGP发布路由时都是经过聚合之后的,这样的路由路由表中并没有,所以要使用命令:
配置这样一条假静态路由来“取悦”BGP。
相关配置命令:
interface NULL0 /*创建null0接口*/
network 118.1.0.0 255.255.0.0 /*BGP要向外发布118.1.0.0/16的路由*/
ip route 118.1.0.0 255.255.0.0 NULL 0 /*配置一条假静态路由取悦BGP*/
执行命令show ip route查看路由表信息,
Routing Tables:
Destination/Mask Proto Pre Metric Nexthop Interface
118.1.0.0/16 Static 60 0 0.0.0.0 NULL0
〚7〛路由交换与技术实习总结
网络技术发展迅猛,以太网占据了统治地位,为了适应网络应用深化带来的挑战,网络的规模和速度都在急剧发展,局域网的速度已从最初的10Mbit/s提高到100Mbit/s,千兆以太网技术也已得到了普遍应用。 对于用户来说,在减低成本的前提下,保证网络的高 可靠性
网络技术发展迅猛,以太网占据了统治地位。为了适应网络应用深化带来的挑战,网络的规模和速度都在急剧发展,局域网的速度已从最初的10Mbit/s提高到100Mbit/s,千兆以太网技术也已得到了普遍应用。
对于用户来说,在减低成本的前提下,保证网络的高可靠性、高性能、易维护、易扩展,与采用何种组网技术密切相关;对于设备厂商来说,在保证用户网络功能实现的基础上,如何能够取得更为可观的利润,采用组网技术的优劣,成为提高利润的一个手段。
在具体的组网过程中,是使用已经日趋成熟的传统的第2层交换技术,还是使用具有路由功能的第3层交换技术,或者是使用具有高网络服务水平的第7层交换技术呢?
在这些技术选择的权衡中,2层交换、3层交换和7层交换这三种技术究竟孰优孰劣,它们各自又适用于什么样的环境呢?
2层交换技术可以识别数据帧中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口,记录在自己内部的一个MAC地址表中。
谈到交换,从广义上讲,任何数据的转发都可以叫做交换。但是,传统的、狭义的第2层交换技术,仅包括数据链路层的转发。
目前,第2层交换技术已经成熟。从硬件上看,第2层交换机的接口模块都是通过高速背板/总线(速率可高达几十Gbps)交换数据的,2层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。
2层交换机主要用在小型局域网中,机器数量在二、三十台以下,这样的网络环境下,广播包影响不大,2层交换机的快速交换功能、多个接入端口和低廉价格,为小型网络用户提供了完善的解决方案。
总之,交换式局域网技术使专用的带宽为用户所独享,极大地提高了局域网传输的效率。可以说,在网络系统集成的技术中,直接面向用户的第2层交换技术,已得到了令人满意的答案。
第3层交换技术是前后才开始出现的一种交换技术,最初是为了解决广播域的问题。经过多年发展,第3层交换技术已经成为构建多业务融合网络的主要力量。
在大规模局域网中,为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划分成多个小局域网,这样必然导致不同子网间的大量互访,而单纯使用第2层交换技术,却无法实现子网间的互访,
为了从技术上解决这个问题,网络厂商利用第3层交换技术开发了3层交换机,也叫做路由交换机,它是传统交换机与路由器的智能结合。
简单地说,可以处理网络第3层数据转发的交换技术就是第3层交换技术。
从硬件上看,在第3层交换机中,与路由器有关的第3层路由硬件模块,也插接在高速背板/总线上。这种方式使得路由模块可以与需要路由的其它模块间,高速交换数据,从而突破了传统的外接路由器接口速率的限制。
3层交换机是为IP设计的,接口类型简单,拥有很强的3层包处理能力,价格又比相同速率的路由器低得多,非常适用于大规模局域网络。
第3层交换技术到今天已经相当成熟,同时,3层交换机也从来没有停止过发展。第3层交换技术及3层交换设备的发展,必将在更深层次上推动整个社会的信息化变革,并在整个网络中获得越来越重要的地位。
第7层交换技术通过逐层解开每一个数据包的每层封装,并识别出应用层的信息,以实现对内容的识别。
充分利用带宽资源,对互联网上的应用、内容进行管理,日益成为服务提供商关注的焦点。如何解决传输层到应用层的问题,专门针对传输层到应用层进行管理的网络技术变得非常重要,这就是目前第7层交换技术发展的最根本原因。
简单地说,可以处理网络应用层数据转发的交换技术就是第7层交换技术。其主要目的是在带宽应用的情况下,网络层以下不再是问题的关键,取而代之的是提高网络服务水平,完成互联网向智能化的转变。
第7层交换技术通过应用层交换机实现了所有高层网络的功能,使网络管理者能够以更低的成本,更好地分配网络资源。
从硬件上看,7层交换机将所有功能集中在一个专用的特殊应用集成电路或ASIC上。ASIC比传统路由器的CPU便宜,而且通常分布在网络端口上,在单一设备中包括了50个ASIC,可以支持数以百计的接口。新的ASIC允许智能交换机/路由器在所有的端口上以极快的速度转发数据,第7层交换技术可以有效地实现数据流优化和智能负载均衡。
在网、Intranet网和Extranet网,7层交换机都大有施展抱负的用武之地。比如企业到消费者的电子商务、联机客户支持,人事规划与建设、市场销售自动化,客户服务,防火墙负载均衡,内容过滤和带宽管理等。
交换技术正朝着智能化的方向演进,从最初的第2层交换发展到第3层交换,目前已经演进到网络的第7层应用层的交换。其根本目的就是在降低成本的前提下,保证网络的高可靠性、高性能、易维护、易扩展,最终达到网络的智能化管理。
〚8〛路由交换与技术实习总结
7月1日,这是我们实习的第一天,我们来到了申菱,这是一家生产中央空调的厂家。来到该厂,该厂负责人首先介绍了一下申菱的一些生产情况。
了解到,广东申菱空调设备有限公司于19xx年正式建成投产,是集科研、生产、检测、销售、工程服务于一体的现代化企业,是中国500家最大电气机械器材制造企业之一。专业生产“申菱”牌大、中型水冷、风冷单元式空调机,洁净式空调机,恒温恒湿型机房专用空调机,屋顶式空调机,高温环境特种空调机,除湿机,冷水机组成风机盘管、柜式风机盘管和组合式空气处理机等末端设备。其中单元式空调机和洁净式空调机包括冷风型、冷风电热型、热泵型、恒温恒湿型等多个系列和品种。
接着将我们分成五组对其生产车间进行参观。
我们首先来到钣金车间。从车间的定置管理图中,可了解到该车间的生产过程是:
下料区 --> 冲压成型区--> 焊料一库 --> 焊料二库 --> 冲压转型区 --> 散件特检点 --> 铝合金加工区 --> 钣金半成品周转区 --> 焊接 --> 喷涂 --> 成品。
在钣金车间,观看了各种机器的生产情况。有M-20xx剪板机、J23-25冲床、J23-40冲床、J23-60冲床、J23-80冲床、J28-500四柱油压机、CSW-250冲角床、TA-60T弯板机、RG-80弯板机等等,各种我们熟悉和陌生的机器。
接着是两器车间。
在两器车间,我们观看了压力容器用钻床、翅片冲床的生产过程,以及一些已经记不清名字的机器的生产。
在总装车间,该厂负责人为我们讲解了管壳式换热器和水冷冷凝器的原理。在这个车间,我们已经能够看到完整的中央空调的雏形,在这个庞然大物中,用到了我们所学过各种各样的知识,有传感器了,有电子技术,精密机器制造等等。从申菱公司生产车间,我们可以看到中国空调技术已经基本成熟,看是它的中央处理芯片还是要靠进口!
在出厂检验车间,师傅为我们讲解了产品检验的过程,并给我示范了检验是如何进行的,所用到的仪器,有精密仪表了,有常用工具了,有一种仪表是我们从来没见过的,那就是利用传感器技术的安培表。
〚9〛路由交换与技术实习总结
伴随着 网络 规模的不断扩大,路由器在沟通子网连接和实现信息交换方面的重要作用逐渐被人们所认知,本文将以Cisco路由器为例简要阐述路由器之间交换路由信息的两种主要算法:距离向量法(Distance Vector Routing)和链路状态算法(Link-State Routing)。
伴随着网络规模的不断扩大,路由器在沟通子网连接和实现信息交换方面的重要作用逐渐被人们所认知。本文将以Cisco路由器为例简要阐述路由器之间交换路由信息的两种主要算法:距离向量法(Distance Vector Routing)和链路状态算法(Link-State Routing)。
路由协议是路由器之间实现路由信息共享的一种机制,它允许路由器之间相互交换和维护各自的路由表。当一台路由器的路由表由于某种原因发生变化时,它需要及时地将这一变化通知与之相连接的其他路由器,以保证数据的正确传递。路由协议不承担网络上终端用户之间的数据传输任务。Cisco路由器中用于TCP/IP的路由协议包括RIP(路由信息协议,Routing Information Protocol)、IGRP(内部网关路由协议,Interior Gateway Routing Protocol)、OSPF(Open Shortest Path First)、NLSP(Netware链路服务协议,Netware Link Services Protocol)和EIGRP(增强IGRP)。
静态路由是指由网络管理员手工配置的路由信息。当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。静态路由信息在缺省情况下是私有的,即它不会传递给其他的路由器。当然,你也可以通过对路由器进行设置使之成为共享的。静态路由一般适用于比较简单的网络环境,因为在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。下面是两个适合使用静态路由的实例。
在左图中,假设Network 1之外的其他网络需要访问Network1时必须经过路由器A和路由器B,则可以在路由器A中设置一条指向路由器B的静态路由信息,这样做的好处在于可以减少路由器A和路由器B之间WAN链路上的数据传输量,因为使用静态路由后,路由器A和B之间没有必要进行路由信息的交换。
在一个支持DDR(dial-on-demand routing)的网络中,拨号链路只在需要时才拨通,因此不能为动态路由信息表提供路由信息的变更情况。这种情况下,也适合使用静态路由。
使用静态路由的另一个好处在于其安全保密性。使用动态路由时,需要路由器之间频繁地交换各自的路由表,而通过对路由表的分析可以揭示网络的拓扑结构和网络地址等信息,因此,出于安全方面的考虑也可以采用静态路由。
在大型和复杂的网络环境中,往往不宜采用静态路由,一方面因为网络管理员难以全面地了解整个网络的拓扑结构;另一方面,当网络的拓扑结构和链路状态发生变化时,需要大范围地调整路由器中的静态路由信息,这一工作的难度和复杂程度是可想而知的。
动态路由使路由器能够自动地建立起自己的路由表,并且能够根据情况的变化适时地进行调整。
动态路由机制的运做依赖路由器的两个基本功能:
前面提到,路由器之间的路由信息交换是基于路由协议实现的。通过左图可以直观地看到路由信息交换的过程。交换路由信息的最终目的在于通过路由表找到一条数据交换的“最佳”路径。每一种路由算法都有其衡量“最佳”的一套原则。大多数算法使用一个量化的参数来衡量路径的优劣,一般说来,参数值越小,路径越好。该参数可以通过路径的某一特性进行计算,也可以在综合多个特性的基础上进行计算,几个比较常用的特征是:
最大传输单元MTU(maximum transmission unit)
本文主要介绍两种基本的路由算法,即距离向量法(Distance Vector Routing)和链路状态算法(Link-State Routing)。路由协议和路由算法只针对动态路由。
(一)、距离向量法(Distance Vector Routing)
在距离向量法中,相邻路由器之间周期性地相互交换各自的路由表备份,
当网络拓扑结构发生变化时,路由器之间也将及时地相互通知有关变更信息。
在图3中,每一个路由器从与之直接相邻的路由器那儿获得对方的路由表。例如,路由器B从路由器A和C那里获得路由信息后,根据其所得到的信息对自己的路由表进行加工,然后将加工后的路由表再传送给路由器A和C。路由器通过这种方法不断地积累路由信息,直到最终收敛为止。值得一提的是,在这种算法中,路由器不可能获知整个网络确切的拓扑结构。路由器是如何根据收到的路由信息对自身路由表进行加工,又是如何达到收敛的呢?
在图4中,有三个路由器:A、B和C。路由器A的两个网络接口E0和S0分别连接在10.1.0.0和10.2.0.0网段上;路由器B的两个网络接口S0和S1分别连接在10.2.0.0和10.3.0.0网段上;路由器C的网络接口S0和E0分别连接在10.3.0.0和10.4.0.0网段上。
如图4中各路由器路由表的前两行所示,通过路由器的网络接口到与之直接相连的网段的网络连接,其向量距离设置为0。这即是最初的路由表。
当路由器B和A以及B和C之间相互交换路由信息后,它们会更新各自的路由表。例如,路由器B通过网络端口S1收到路由器C的路由信息(10.3.0.0,S0,0)和(10.4.0.0,E0,0)后,在自己的路由表中增加(10.4.0.0,S1,1)这样一条路由信息,表示通过路由器B的网络接口S1可以访问到10.4.0.0网段,其向量距离为1,该向量距离是在路由器C的基础上加1获得的。同样的道理,路由器B还会产生一条(10.1.0.0,S0,1)的路由,这条路由是通过网络端口S0从路由器A获得的。如此反复,直到最终收敛,形成图4所示的路由表。
概括地说来,距离向量算法要求每一个路由器把它的整个路由表发送给与它直接连接的其他路由器。路由表中的每一条记录都包括目标逻辑地址、相应的网络接口和该条路由的向量距离。当一个路由器从它的邻居那儿收到更新信息时,它将更新信息与本身的路由表相比较,如果它能从邻居那儿找到一条它以前不曾知道的新的路由或是找到一条比当前路由更好的路由时,路由器会对路由表进行更新:将从该路由器到邻居之间的向量距离与更新信息中的向量距离相加作为新路由的向量距离。上例中将相邻路由器之间的向量距离设置为1。
所谓收敛,是指直接或间接交换路由信息的一组路由器在网络的拓扑结构方面或者说在网络的路由信息方面达成一致。路由协议必须通过某种算法使各路由器尽快达到收敛状态。
要实现收敛,必须解决路由器之间的路由环路(Routing Loops)问题。下面的例子比较直观地讲述了路由环路问题的产生。假设在图4中,网络10.4.0.0发生故障,在网络发生故障前,路由器A、B、C的路由表已经收敛为图4的状态。情况按照下面的描述一步步发生:
(1)网络发生故障后,路由器C检测到故障,停止通过接口E0向外发送数据包,并通过接口S0通知路由器B。在路由器A没有收到故障通知前,它仍然相信可以通过路由器B访问到10.4.0.0(路由器A路由表的最后一行),这条路径的距离为2。
(2)由于路由器B的路由表中指示有一条通往10.4.0.0的路径,因此,如果路由器B在收到路由器C的故障通知前将路由表发送到C的话,C会认为通过B可以访问10.4.0.0,并在此基础上修改自己的路由表,将路由表中第二条记录修改为(10.4.0.0,S0,2),其中S0表示通过接口S0可以访问10.4.0.0,其距离为2。
(3)这样一来,路由器A、B、C都认为通过其他的路由器存在着一条通往10.4.0.0的网络路径,结果导致目标地址为10.4.0.0的数据包在这三个路由器之间来回地传递,从而造成一条路由环路。
解决路由环路问题可以采用以下几种方法:
这种方法规定,路由器必须有选择地将路由表中的路由信息发送给相邻的其他路由器,而不是发送整个路由表。具体一点,即对于某条路由信息来说,不将它发送给该条路由信息的来源方向。仍以图4为例。图5是图4中路由器B的路由表,通过图5中的注释可以看到,每一条路由信息都不通过该条路由信息中所指的网络端口向外发送。
这样就可以避免路由环路的产生。
定义一个向量距离的最大值,可以在一定程度上防止形成路由环路,例如RIP协议定义Hop Count的最大值为16。使用这种方法,路由协议在向量距离超过协议允许的最大值前,允许路由环路的存在,一旦路由信息的向量距离超过规定的最大值,该路由信息将被标记为不可到达。 与此相关的另外一个概念是TTL(Time To Live)。TTL是一个包含在数据包中的参数,数据包每经过一次路由器的路由处理,TTL值减1,当TTL值等于0时,路由器将放弃对该数据包的处理,这样会避免数据包在某个环路中无休止的传递。
(3) 挂起计数器(Hold-Down Timers) 所谓挂起计数器是指路由器需要将某些可能导致路由环路的网络状态的变化保留一段时间,在这段时间内,路由器将视情况对这些网络状
〚10〛路由交换与技术实习总结
随着用户网络应用要求的提高,仅仅有NAT已经不够用了,尤其用户对网络安全和其他保证网络平安通畅运行的功能要求非常迫切,宽带路由器的设计越来越复杂化了,包含了FIREWALL、DMZ、虚拟服务器等诸多功能,宽带路由器走上了多功能化的道路,各种SOHO路由器产品应运而生。
现在,另外一个发展趋势越加明显,宽带路由器逐渐从最初的SOHO、家庭应用中走出来,被广大的企业用户选择作为中等规模网络的组网设备,而在这种环境下,企业用户对宽带路由器提出了更加复杂的功能要求:如速度更快、安全性更强、可管理、应用模式丰富多彩等。因此,宽带路由器呈现出多样化的发展势头,种类繁多、性能各异的产品构成了高速发展的SMB宽带路由器市场。3lian素材
其中,多WAN口的宽带路由器就是这样一类颇具特色的SMB产品系列。它把“一对多”的宽带接入方式变成了“多对多”的方式,充分满足了企业用户不花费太大代价就能拥有更多带宽的渴望。这种路由器允许用户在一个局域网内共享2-4条的宽带外线,不必把内部网络按照WAN口数量分成独立的几个部分。实际上,它的工作机理就是把局域网内的各种传输请求数据,以事先设定的负载均衡策略,平均分配到不同的宽带出口,而请求来的数据再从该出口回来,从而实现智能化的信息动态分流。由于局域网的会话请求是分散的、源源不断的,经过分配后,宏观上看起来就像是扩大了整个局域网的出口带宽,起到了带宽成倍增加的作用。
多WAN口宽带路由器在技术上实现起来是比较复杂的,对硬件处理能力的要求也非常高。多WAN口的处理不是一个标准的网络协议,没有可遵循的规范,只是一种实现策略。因此,由于技术能力和实地调试环境的不同,各厂家的同类产品良莠不齐,差别很大。因为要完成数据包高速的分发和回收,必须将复杂的算法不断优化,达到准确高效、适应性强的目的,对设计工程师网络嵌入式软件的功力要求是很高的。
与此同时,多WAN口路由器必须采用高速的CPU及大容量的存贮器,否则根本无法胜任对每一个IP包进行解析处理的繁重任务。低速的CPU处理能力不足,会造成内部软件系统的崩溃,路由器只好频频死机了,
据实用结果分析,采用速率150 Mips 以上CPU的路由器,基本上能够适应多WAN口路由器的工作强度要求,而采用低于150M的CPU的路由器,在很多环境中死机故障发生的概率极高,如此小材大用,就显得有些捉襟见肘了。
多WAN口路由器的负载均衡机制是单WAN口没有的功能,也是多WAN口最特别的应用模式。常见的负载均衡机制有三种:
系统以Session(会话)数目为计数单位,所有Session按1:1的比例均分到所有启用的WAN口。
类似于Session方式,但Session的比例可以调节。
系统自动寻找流量最少的WAN口来收发数据。
还有一种手动设置的负载均衡方式--WAN口路径指定,是第4种负载均衡机制,或称作负载分配机制。在“欣向”多WAN路由器中就有这样一个特定的功能。它主要针对教育网、行业专网用户,根据需要有选择地使用WAN出口,比如CERNET和电信公众网出口共用的教育网、军队专网和外部ADSL 等应用环境下,比较适合采用WAN口路径指定的负载分配机制。
除此之外,多WAN口路由器还能起到线路备援的作用,一旦一条宽带线路发生故障,另外一条线路将承担起所有用户的数据请求,从而对整个的网络系统进行了加固,避免了网络出口瘫痪造成的灾难性后果。尤其对于运营性网吧,线路故障不仅造成金钱损失,客户流失的严重后果也将是网吧业主无法承受的。同样,对现在的一些信息化程度较高的企业来说,对网络系统的依赖日重,办公业务网络已经须臾不能离开,缺乏备份的网络系统也存在巨大的隐患。因此,选择多WAN口路由器就体现了管理者防患于未然的明智之举。
由于存在多种宽带接入方式以及电信运营商竞争格局的形成,光纤、ADSL、CABLE MODEM、五类线、ISDN等宽带手段并存,甚至在ADSL一项上,就有电信、网通、铁通等多家的服务提供,因此在现实的应用中能够看到,聪明的用户同时选择了几家的服务,从资费上考虑是一方面因素,而担忧宽带服务质量,从网络安全备份上考虑是更重要的另一方面因素。由此,多WAN口路由器派上了大用场。
〚11〛路由交换与技术实习总结
在分组交换方式中,由于能够以分组方式进行数据的暂存交换,经交换机处理后,很容易地实现不同速率、不同规程的终端间通信,分组交换的特点主要有:
线路利用率高:
分组交换以虚电路的形式进行信道的多路复用,实现资源共享,可在一条物理线路上提供多条逻辑信道,极大地提高线路的利用率。使传输费用明显下降。
不同种类的终端可以相互通信:
分组网以X.25协议向用户提供标准接口,数据以分组为单位在网络内存储转发,使不同速率终端,不同协议的设备经网络提供的协议变换功能后实现互相通信,
信息传输可靠性高:
在网络中每个分组进行传输时,在节点交换机之间采用差错校验与重发的功能,因而在网中传送的误码率大大降低。而且在网内发生故障时,网络中的路由机制会使分组自动地选择一条新的路由避开故障点,不会造成通信中断。
分组多路通信:
由于每个分组都包含有控制信息,所以分组型终端可以同时与多个用户终端进行通信,可把同一信息发送到不同用户。
计费与传输距离无关:
网络计费按时长、信息量计费,与传输距离无关,特别适合那些非实时性,而通信量不大的用户。
〚12〛路由交换与技术实习总结
要想了解路由器和交换机的区别,首先明白什么是路由器,什么是交换机,这无疑有着很重要的意义。那么思科路由器跟交换机的区别是什么?下面一起来看看吧!
路由器是互联网的主要节点设备。路由器通过路由决定数据的转发。转发策略称为路由选择(routing),这也是路由器名称的由来(router,转发者)。作为不同网络之间互相连接的枢纽,路由器系统构成了基于TCP/IP的国际互连网络Internet的主体脉络,也可以说,路由器构成了Internet的骨架。它的处理速度是网络通信的主要瓶颈之一,它的可靠性则直接影响着网络互连的质量。因此,在园区网、地区网、乃至整个Internet研究领域中,路由器技术始终处于核心地位,其发展历程和方向,成为整个Internet研究 的一个缩影。在当前我国网络基础建设和信息建设方兴未艾之际,探讨路由器在互连网络中的作用、地位及其发展方向,对于国内的网络技术研究、网络建设,以及明确网络市场上对于路由器和网络互连的各种似是而非的概念,都具有重要的意义。
而交换机则是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地 址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
那么,路由器和交换机究竟有着什么样区别呢?具体来说,主要分为如下四部分:
1、二者的工作层次不同
最初的的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。
2、二者的据转发所依据的对象不同
交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经 固化到了网卡中去,一般来说是不可更改的。而IP地址则通常由网络管理员或系统自动分配。
3、传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域
由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。连接到路由器上的网段会被分配成不同的.广播域,广播数据不会穿过路由器。虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。
4、路由器提供了防火墙的服务,而交换机则没有
路由器仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。
综上所述,交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。他 们只是从一条线路上接受输入分组,然后向另一条线路转发。这两条线路可能分属于不同的网络,并采用不同协议。相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广泛应用。
〚13〛路由交换与技术实习总结
1、安全,难燃防火,无污染,可直接安装在负荷中心。
2、免维护、安装简便,综合运行成本低。
3、防潮性能好,可在100%湿度下正常运行,停运后不经预干燥即可投入运行。
4、损耗低、局部放电量低、噪音小,散热能力强,强迫风冷条件下可以150%额定负载运行。
5、配备有完善的温度保护控制系统,为变压器安全运行提供可靠保障。
6、可靠性高。据对已经投入运行的XX0多台产品的运行研究 ,产品的可靠性指标达到国际先进水平。
在干式变压器技术上走上了自我发展创新的道路、达到了国际先进水平的同时,该厂还开发研制了许多其他类型的城网电气产品如电抗器、美式箱变、组合式变电站、sf6 互感器、成套装置、 开关柜等。
参观完展示厅,接着我们去参观了生产车间。
大家都知道变压器的两大部分:①铁芯、②线圈。在铁芯车间和线圈车间我们就分别看到了这两大部分的生产过程,这么宠大的变压器器件也是我第一次看到的,真让人瞠目结舌!
带领我们参观的是一位资深工程师,他一边带领我们参观,一边为我们讲解变压器的相关知识。在线圈车间,他问我们,为了保证附件不生锈,我们应该如何处理?各人各议,但都不全,他接着说,有两种:①热喷金、②热镀金。
接着又去了总装车间。
我觉得本日给我印象最深的莫过于顺特的自动化仓库和成套镀金车间的数控机床。
虽然在很遗憾不能看到自动化仓库的运作,但有幸第一次看到这种自动化仓库实在难得。
而那部从日本进口的数控机床,它的自动化程度,它的精密度,它性能指标也实在令人感叹不矣!而我们中国又什么时候能够生产出这种机器呢? 在顺特参观的时间很短,但每天的新景象都让我们的大脑得到了充实,对于不同知识的了解,不同领域的接触,让我们的眼界也得到了开阔。
美的洗碗机制造有限公司 7月3日,我们来到顺德美的洗碗机制造有限公司。
顺德美的洗碗机制造有限公司座落于顺德市北窖镇工业园内。是1999年顺德市十大招商项目之一,由广东美的集团股份有限公司、意大利普诺泰科有限公司和香港西达有限公司三方共同合资经营。
美的洗碗机制造有限公司投巨资引进意大利梅洛尼公司先进的产品技术及关键的检测设备、制造设备和模具,生产经营洗碗机及其配件,其生产自动化程度在国际同行业中位居前列,在国内更是首屈一指,目前可以年产各式洗碗机50多万台。
二期投资完成后,将形成年产100万台各式洗碗机的生产能力。
美的洗碗机制造有限公司坚持以“出口市场支撑为主,带动国内销售为辅”的指导思路,以出口为导向,实现产品的国际化,现在开发出的3大系列近30款产品通过了全球著名认证机构德国tuv的gs、ce、emc,美国的ul,加拿大的csa等多种认证,拿到了产品顺利进入欧洲和美洲市场的有效“通行证”。而且,美的洗碗机公司开发生产的18寸柜式洗碗机的性能指标已达到了aab级标准。到目前为止,美的洗碗机已成功的销往15个国家和地区,以良好的质量广受欢迎。
美的洗碗机制造有限公司主要生产台式洗碗机和柜式洗碗机。
台式洗碗机的主要参数是: 械程控器?/span> 最高水温85℃ 最高喷水速度7.8米/秒 余热干燥 透明视窗 供3-5人使用 柜式洗碗机的主要参数是: 配置软水器 配置磁化器 机械程控器 三层喷洗 最高水温75℃ 最高喷水速度7.2米/秒 余热干燥 不锈钢碗架 自动排渣 供5-8人使用 听负责人说,由于原料补给不及时主要生产线正好停产,所以我们所能看到的就只是部分生产部件的生产了。
在生产车间中最引人注目的莫过于那套全动化控制的内胆中板生产线了。从抓起原料 -à 拉裂 -à 起皱-à划伤-à成品,全部生产过程由机械手和机器全自动化进行。
在油压机控制点中,可以看到这里由两部分构成。
一是单动薄板拉伸液压机,二是闭式双点机械压力机。
接着负责人带领我们参观了正好停产的生产线,并为我们讲解生产线的生产过程,他讲得绘声绘色,让人如身临其境其生产,如果能一目其生产过程,真是可一观其壮美景象。
紧接着我们去了样机组和工艺试验区。领队负责人,很详细地为我们讲解了他自己设计的一款洗碗机的工作情况,如何控制、如何运作、内部构成等等。在工艺试验区,我们可以看到成品后,他们对成品进行检验的过程,这对于他们对产品进行改进,性能进行提高是相当重要的。
洗碗机对我们中国人来说,还是一种很新鲜的东西,而美的能够抢先商机可见其眼光是如何的前卫,但他们也是刚刚起步,大部分的产品是帮别人贴牌出口,中央技术也是靠进口。听负责人讲,如果以美的名字出口,效益可能不是很好,此番话实在令人叹息!但我们来的目的是学习,这些事情与我们也相关不大,而我们任务是在不久的将来将所学知识应用于实际,看那时我们是否可以有所作为吧!
联塑科技实业有限公司 7月4日,我们来到了广东联塑科技集团,这是中国一家最大的塑胶管道及塑料挤出生产设备的制造企业之一。作为一家集团化、现代化的高新技术企业、联塑主要产业为塑胶、机械、电器,并泛及化工、贸易、国际投资等领域,其主导产品为塑胶管道及塑料挤出生产设备。
塑胶方面主要生产pvc-u给水管、排水管、pp-r饮用水管、pe管材、铝塑复合管、pvc电线槽管等产品;机械方面主要生产pp-r管材挤出生产线、pvc管材挤出生产线、铝塑复合板材生产线、pe双壁缠绕管挤出生产线、大口径pvc管材生产线、平行双螺杆挤出机、pvc塑钢门窗生产线等机械设备;电器方面主要生产高级开关插座,换气扇系列产品;化工方面主要研究开发生化工改性材料等新产品。
以上资料是由该厂制作的广告片中所了解的,该厂负责人特别安排几位华工、广工的师兄带领我们参观,而带领我们的是位华工师兄。
华工师兄在带领我们参观的同时,还一边为我们讲解产品的特点、性能、规格等相关知识,方便我们理解。
据记录: pvc-u排水管 产品特点: 适合现代码的大型建筑 内壁光滑,减小流体的磨擦阻力 采用具有高抗冲能力的环保材料 耐腐蚀性强 管材管件配套齐全 采用溶解性胶粘剂接驳 重量轻、易于运输、安装、保养、维修方便 寿命长 pvc包括管材(lsp系列)、雨水管材(lsy系列)、扩口管材(lsk系列)。
pp-r环保健康饮用水管 产品特点: 卫生、无化学作用、氧化问题 安装方便可靠 保温节能 sp; 重量轻、比强度高 产品内外壁光滑,流水阴力小,低噪音 耐热能力高;低导热体,能承受热水及高压 产品高柔韧度,不怕严寒气温,可接受很大的膨胀 耐腐蚀,不结垢 使用寿命长 可回收性 产品规格: 联塑pp-r管材、管件规格为ф20-ф110mm。
此外华工师兄还就其它产品,如pvc-u双壁波纹管、pe健康给水管道、pe安全燃气管道等等产品,为我们作了详细的讲解,以及我们所提的问题,都热情的为我们解答。最后该厂负责人,亲自带领我们去了插座生产车间。
〚14〛路由交换与技术实习总结
1、工作层次不同
最初的的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。
2、回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。
3、子网划分:交换机只能识别MAC地址。MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。
4、负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。
5、广播控制:交换机只能缩小冲突域,而不能缩小广播域。整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。
6、介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的`网络。路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。
7、保密问题:虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。
〚15〛路由交换与技术实习总结
RIP(Routing Information Protocol)是基于D-V算法的内部动态路由协议,它是第一个为所有主要厂商支持的标准IP选路协议,目前已成为路由器、主机路由信息传递的标准之一,适应于大多数的校园网和使用速率变化不大的连续的地区性网络。对于更复杂的环境,一般不应使用RIP。
RIP1作为距离矢量路由协议,具有与D-V算法有关的所有限制,如慢收敛和易于产生路由环路和广播更新占用带宽过多等;RIP1作为一个有类别路由协议,更新消息中是不携带子网掩码,这意味着它在主网边界上自动聚合,不支持VLSM和CIDR;同样,RIP1作为一个古老协议,不提供认证功能,这可能会产生潜在的危险性。总之,简单性是RIP1广泛使用的原因之一,但简单性带来的一些问题,也是RIP故障处理中必须关注的。
RIP在不断地发展完善过程中,又出现了第二个版本:RIP2。与RIP1最大的不同是RIP2为一个无类别路由协议,其更新消息中携带子网掩码,它支持VLSM、CIDR、认证和多播。目前这两个版本都在广泛应用,两者之间的差别导致的问题在RIP故障处理时需要特别注意。
我们还将关注RIP配置和与其他厂商互通中的一些问题。
如果配置的两台路由器间不能用RIP互通,在物理连接没有问题的时候,就要考虑是否是下面原因:
(1)在Quidway系列路由器之间不通:
l可能是RIP没有启动, 也可能相应的网段没有使能。
这里需要注意的是在用使用network命令时要按地址类别配置相应的网段。例如接口地址137.11.1.1,由于137.11.1.1是B类地址,如果设置“network 137.0.0.0”,报文将不会被对端接受,此时配置成“network 137.11.0.0” 就可以正确接收了。
l另一个可能原因是接口上把RIP给关掉了。
-
【一起合同网HC179.com】热搜同款推荐:
- 实习与学校总结 | 设备技术实习总结 | 顶岗实习技术总结 | 技术实习培训总结 | 路由交换与技术实习总结 | 路由交换与技术实习总结
这是要查看一下配置信息,看看接口上是不是设置了undo rip work 或undo rip input或undo rip output命令。
l还有一个可能原因是子网掩码的不匹配。
在RIP1这样的有类别路由协议中,主网中的每一路由器和主机都应有相同的子网掩码。如果子网掩码长度不匹配,信息包就不能正确路由。
2.2 在Quidway系列路由器与其他厂商路由器之间不通:
l然后考虑是不是版本设置不同。Quidway系列路由器缺省情况下,RIP可以接收RIP1和RIP2广播报文,但是只能发送RIP1报文。如果Quidway系列路由器之间互通时,一个配置为RIP1,一个配置为RIP2, 是可以正确的收发报文的; 但是如果Quidway系列路由器和其他厂商路由器互通时, Quidway系列路由器配置了RIP2,而其他厂商路由器还是RIP1,就会有可能出现问题。
由于RIP2对RIP1有许多功能上的扩充,它们之间的混淆也会带来一些问题。
(1)配了验证,却没有起作用:
由于RIP-1不支持验证,如果在启动RIP后就配验证,实际上是不起作用的(缺省条件下时RIP-1),只有在两端的接口上配了rip version 2 后验证能生效。
在取消自动聚合的情况下, 如果发送的报文中有一条B类地址的路由,但是 配了24位掩码,结果发现对端路由表上的出现的是16位掩码,如:
137.11.1.0/24, 得到137.11.0.0/16 , 就是由于没有配ip rip version 2, 因为RIP-1不支持子网掩码,只能按地址类别聚合发路由,137.11.1.0是B类地址就会按类聚合为137.11.0.0发出去, RIP2支持子网掩码, 这样配置的子网掩码就能发过去了。
相关的问题还有对于两条在同一主网中的路由,如10.1.0.0和10.110.0.0,在RIP1下不做区别都聚合成10.0.0.0往外发。RIP-2下都配16位掩码就可以区别发出。
RIP1永远使用聚合 ,且RIP的聚合是按照类进行的,RIP2 缺省也使用聚合,但是可以在协议模式下取消。需要注意的有两点:
l取消自动聚合只对RIP2接口有效.
l自动聚合是为了减少网络中路由量,如果没有特殊原因,一般不要取消,
RIP仅仅是以跳数作为选择路由的度量值,完全不考虑不同路径带宽的影响。这在某些情况下,我们会发现报文到达目的地所经过的路由并非最佳路由。例如:从源到目的的报文可能从hop为1的ISDN链路(该链路其真实作用是用于备份)转发,而不走带宽高达10Mbps的两个局域网链路,仅仅是因为其hop值为2。
此时的解决办法就是重新设计网络或使用其他具有更大灵活性的路由协议(如:OSPF)。
RIP缺省设置是每隔30秒进行广播交换整个路由表信息,这将大量消耗网络带宽,尤其是在广域网环境中,可能出现严重性能问题。
当由于RIP广播而产生网络性能问题时,可以考虑使用“neighbor”命令配置RIP报文的定点传送。一方面,定点传送可用于在非广播网络(如帧中继网络)支持RIP。另一方面,定点传送用于以太网环境可以显著减少其上的网络流量。
RIP是一个距离矢量协议,同时由于Garbage定时器的设置,可能会产生下面这个有趣的现象:有时候配置了一个命令却发现没起作用, 这可能会使我们认为是配置出错或者其他故障,其实是由于RIP慢收敛的原因需要一段延时,不要着急,先等几分钟,也许你什么都没做就可以看到一切都正常了。
说明:
Garbage 时间:当路由被标记为无效之后,此时路由器并不立即删除此路由,而是保持一段时间,只有在经过这段时间之后,路由器才真正将此路由从路由表中彻底删除。这段时间就称为Garbage时间。Garbage时间有助于增加网络的稳定性,但付出的代价是路由再次可用的时间推迟,即收敛更缓慢。
1. 帧中继中的水平分割问题:
在帧中继,X25等NBMA网络上运行的时候,要取消水平分割,在接口模式下配置no ip rip split,如果使用水平分割,使用同一个物理接口下的逻辑接口之间就不能交换路由信息了。
2. 验证问题:
配置验证时,在配置了验证类型,没有配验证字时是不显示验证信息的,这时候验证也不起作用。
3. 地址借用问题:
地址借用必须两端同时借用,如果只有一端借用,会由于两端不在同一网段而导致不能互通,如果两端都借用就可以取消对源地址的检查。
在网络上测定IP连通性的最常用方法是Ping命令。从源点向目的端发送Ping命令成功的话,意味着所有物理层、数据链路层、网络层功能均正常运转。而当IP连通失败,我们首先要检查的是源到目标间所有物理连接是否正常、所有接口和线路协议是否运行。当物理层和数据链路层检查无误后,我们将排错重点转向网络层,假定此网络运行的路由协议为RIP,那么一般故障处理的步骤如下:
1. 检查从源到目的间的所有路由设备的路由表,看是否丢失路由表项。
例如:从源设备Ping目标设备161.7.9.10 没有响应,我们应当使用display ip routing-table命令依次检查从源到目的间所有路由表项为161.7.x.x (x.x根据使用的RIP版本不同可能会有所不同)的项。
2. 当发生路由表项丢失或其他问题,检查网络设备的RIP基本配置
(1) 使用display rip 命令察看RIP的各种参数设置。
l看RIP是否已经启动,相关的接口是否 已经使能,network命令设置的网段是否正确;
(2)用debug rip 系列命令看RIP的调试信息。
通过debug信息可以很明白的看出RIP报文是否被正确的收发;如果发送或接收有问题,也可以由debug信息中看到是什么原因而导致发送或接收报文失败。
应当考虑是否在接口上配置undo rip work命令,是否验证有问题,是否引入其他路由有问题,是否访问控制列表配置不正确等等。
l查看接口的display current-configuration信息可以看到RIP在接口模式下的配置信息是否正确。如该接口是否收发RIP报文,接口配置验证了么和验证是什么类型的,接口向外发送的报文是RIP-1还是RIP-2,是广播发送还是多播发送,接口在接收和发送路由时是否增加附加的路由权。
l查看display current-configuration信息可以看到RIP在协议模式下的配置信息是否正确。如是否引入其他协议的路由,如果引入,是已多大的路由权值引入的;是否对路由进行过滤和按什么规则过滤等。
〚16〛路由交换与技术实习总结
自动交换光网络(ASON)是在不断适应业务快速发展趋势而产生的新一代光传送网技术, ASON网络作为具有分布式智能的光传送网,它的最大特点就是在传送平面和管理平面的基础上引入了具有智能的控制平面,使用了信令、路由、自动发现等技术。ASON技术在光传送网中的引入将为运营商带来很多优势。比较公认的优势包括:快速提供业务,提供多种保护恢复机制,提供新的业务类型等等,而其中提供多种保护恢复机制是目前运营商规划建设ASON网络时重点关注的问题,而且也是厂家特色功能的集中体现之处。
基于此,本文以现有的保护恢复标准和开发情况为基础,重点对保护和恢复在网络中的应用策略进行分析和研究。
保护机制是指为了对一条或多条工作连接进行保护,而预先建立起一条或多条保护连接的机制。这些用于保护的容量即使未被使用也不能被重路由利用,而且中间节点用于保护的交叉连接已事先完成配置,在保护时不需要进行改变。
在保护机制中,由于保护通道/链路都是预先建立的,在故障发生时不需要通过ASON信令去指挥任何中间节点的连接控制器发生倒换,因此业务恢复的速度快(一般小于50ms),适用于较高等级的业务;但是由于用于保护的容量即使未被使用也不能被重路由使用,这就使得保护机制需要较多的冗余资源,一般会超过100%。目前,保护方案可以分为以下几类。
l 1+1保护:业务在两条完全不相交的通道/链路(工作通道/链路和保护通道/链路)上同时传送,在接收端选择质量最好的信号。
l 1:1保护:业务只在工作通道/链路上传送,而保护通道/链路不传送业务或传送低优先级的业务。当工作通道/链路发生故障时,业务由工作通道/链路倒换到保护通道/链路上,而保护通道/链路上的低优先级业务被放弃。
l 1:N保护(N>1):N条工作通道/链路共享1条保护通道/链路。N条工作通道/链路同时出现故障的几率很低。如果有超过一条工作通道/链路出现故障,就保护优先级最高的工作通道/链路。
恢复机制是指通过重路由机制建立新的连接以代替失效连接的机制,这些新连接会占用网络中冗余的共享容量。与保护不同,当故障发生需进行恢复时,网络中支持该连接的部分或全部交叉连接会发生变化。
由于恢复利用共享冗余容量建立新连接来代替发生故障的连接,通常会涉及动态的资源建立和路由计算(路由计算可预先进行),因此比保护需要更多的时间进行倒换(一般为几百ms),不能适用于高等级的业务;但也正是由于能够对共享冗余容量进行动态的使用,使得恢复机制的资源利用率比较高,只需要50%~70%的冗余容量。
根据路由计算和资源分配发生的时间不同,恢复可以分为预置和实时两种方式。在预置方式中,恢复路由或资源(时隙)在故障发生之前就已经确定并在相应节点进行了预置存储,当故障发生之时直接调用相应的恢复路由或资源信息进行交叉连接;在实时方式中,计算软件在故障发生之后才根据网络当时的资源情况进行路由计算和资源分配,继而完成交叉连接。实时方式可以反映当前网络资源的使用情况,所以路由资源的调配较之预置方式更具灵活性,但其恢复速度比预置方式要慢。
根据故障修复后的业务处理,恢复机制可以分为可返回和不返回两种。可返回方式就是指故障修复后需要将业务从保护连接上倒换回初始的工作连接上,这样做可以尽量保持网络的初始优化设计;不返回方式与前者相反,即使故障得到了修复,业务也不返回初始的工作连接而继续保持在保护连接之上,这样做节点不需保存初始工作连接的信息。
目前,各个厂家ASON设备的保护恢复功能存在比较大的差距。本人分析,造成这些差距的主要原因有两个方面:一是保护恢复方面的标准还有待发展,目前的标准主要是提出了保护恢复定义和基本功能要求,而具体的实现方式还没有规定,而且对于互连互通涉及问题也没有进行规范;二是保护恢复同运营商的需求密切相关,不同的运营商提出的不同需求引导了厂家对于保护恢复功能的研发方向。
从支持的保护恢复类型看:1+1保护和预制/实时恢复在实现上相对简单,并且需求明显,因此它们是多数厂家目前都可以实现的基本保护恢复机制;而1:1或M:N涉及优先级,业务抢占等比较复杂的策略,而且需求还不明朗,因此多数厂家还不予支持,
从时间性能看:保护机制,特别是1+1保护的倒换时间都可以控制在50ms之内;而恢复机制的业务恢复时间则差距很大,这是由于厂家在采用的检测机制,路由算法效率,预置程度(路由或资源)等实现方式上具有各自的特点。
从保护恢复方式的组合形式看:这个方面应该是厂家在保护恢复功能中最具特色的方面。永久1+1保护(当故障出现在使用备用电路的同时再生成另一条备用电路),保护失败后进行恢复,传统环保护/SNCP保护失败后恢复,传统环保护/SNCP保护和ASON保护恢复的分段结合等等组合形式满足了运营商不同的需求。但是,多样组合形式在为运营商提供更多选择的同时,也给互连互通造成了障碍,厂家特殊性必然导致标准化程度的降低。
在ASON网络中保护恢复的应用是非常重要的,与信令和路由不同,它的应用具有更强的灵活性和多样性。保护恢复的应用策略涉及方面很多,这里仅对保护恢复的等级划分和域间保护恢复的实现方式提出一些想法和建议。
由于不同的保护恢复机制出自于不同的设计思路,它们在保护恢复时间和对于业务可靠性的保证程度上存在较大的区别,正是这种区别为划分业务等级提供了一种技术基础,运营商可以根据业务的要求,为不同的业务选用不同的保护恢复等级,并且可以和客户签订基于保护恢复的SLA。表1就显示了针对现有保护恢复机制而进行的等级划分。这里是一个具有普适性的等级划分方式,运营商可以根据具体情况,平衡业务需求和网络资源利用率来选择适当的划分等级。
ASON网络可以由多个控制域构成,为了提高网络的生存性,域间的保护恢复是需要特别关注的关键问题。根据G.8080的规定,域间故障包括域间链路故障和域间网关节点故障。对于域间链路故障采用图1所示的方式对链路故障进行保护恢复;对于域间网关节点故障采用图2所示的方式对节点故障进行保护恢复。
如果从节省资源角度考虑,采用图1所示方案就可以同时对域间链路和网关节点的故障进行保护恢复。采用这种方案,必须规定保护路由和出现域间故障时的恢复路由应与初始的主用路由使用不同的边界网关节点。
如果从提高域间恢复速度角度考虑,应采用图1和图2所示方案的结合,即每条域间连接都具有两条光纤路由,而域间具有两对边界节点的连接,如图3所示。这种方案在只有域间链路出现故障时可以采用传统的1+1复用段保护来实现链路保护,而无需采用重路由到另一个网关节点的方式来解决,这样做可以大幅度的提高恢复速度(对于域间链路故障可以在50ms内恢复业务)。当然如果采用保护机制,保护路由仍应与初始的主用路由使用不同的边界网关节点。
由于恢复时间同网络规模密切相关,恢复应遵循先域内,再域间最后借助于第三个域的顺序,尽量将恢复限制在较小的网络规模内以提高恢复速度。具体过程是这样的:(编程入门网)
(1)检测故障为控制域内部故障,应首先启动域内的恢复机制,如果域内已没有恢复资源再选择另一个边界网关节点启动域间恢复机制,如果仍然失败可以继续借助于相邻第三个域的资源完成恢复;
(2)检测故障为域间故障,直接启用域间恢复机制,如果由于资源问题无法寻找到恢复路由可以继续借助于相邻第三个域的资源完成恢复;
(3)如果域间链路采用了1+1复用段保护来实现域间链路保护,域间恢复机制的启用需要有一个等待延迟时间以防止1+1复用段保护和恢复发生冲突。这个等待延迟时间最多只需设置为50ms。如果采用的是实时恢复,恢复路由的计算可以在等待时间内就进行,在超出等待延迟时间而业务仍未恢复时再开始执行域间恢复操作。
目前,国内外很多运营商都正在考虑ASON网络的引入问题,保护恢复作为ASON网络的关键技术和重要优势之一,针对于它的应用策略研究是不可忽视的。合适的应用策略会帮助运营商达到提高网络效率和业务服务水平的目的。
从各厂家ASON设备的情况看,它们都已具有了基本的ASON保护恢复功能,并且具有各自的特点。运营商可以在综合考虑标准程度,设备水平,网络拓扑,业务需求等多方面因素的基础上,选择ASON网络中保护恢复的应用策略。
〚17〛路由交换与技术实习总结
测控技术与仪器介绍信
尊敬的领导:
您好!
非常感谢您在百忙之中抽出时间看我的自荐信,我是xx大学信息工程学院电子系学生,xx届应届毕业生。我的专业是仪器仪表检测。
在大学期间,我学习刻苦努力,成绩优异,先后五次获奖学金,基础扎实,实践能力强,学校安排的实习、课程设计均获得优异成绩。此外,我还擅长计算机和英语,已通过了计算机国家三级A考核和英语国家四级。同时,我对计算机进行了较为系统的学习,必修课包括:计算机文化基础,计算机软件基础,计算机硬件基础,计算机接口技术,计算机控制技术,并自学了C语言、VB、OFFICE和宏汇编。学习理论知识之余,我也注重实践能力的培养。大一时我就参加了校电子科技协会,
自大二起,我就在实验室帮助老师准备各种实验。经常参与实验室仪器的维护,对实验室的仪器比较熟悉,动手能力和实验能力都比较强,能开发单片机系统,熟悉DSP硬件,软件应用。
为培养自己各方面的能力,我先后担任过寝室长,学生会干部,xx班班长和检测专业班班长。我还积极参与策划社团活动,广泛建立人际关系,组织策划过一系列活动,深得老师同学好评。在任班长期间,在我和全班同学的`共同努力下,我班先后获校文明班级、市文明班级称号,我本人也被评为校优秀大学生。具备了较强的组织能力和把理论运用与实际的能力。
踏实守信、真诚待人、处事热情、积极进取是我的座右铭,诚冀贵公司给我一个施展才华的机会,成为贵公司风雨同舟的一员,我必能为贵公司的发展助上一臂之力!
自荐人:xxx
xx年xx月
您还可以浏览以下相关推荐介绍信:
介绍信的格式
大唐无双运镖介绍信
行政介绍信
〚18〛路由交换与技术实习总结
本实验报告将路由交换技术实验所要求的重点内容编排为八个实验章节,各章内容结构一致。每章第一部分是实验所涉及技术的概述,使大家可以较快回忆起理论课上的技术要点,为实验进行技术上的准备;第二部分是实验内容部分,讲解具体的实验,是各章的中心;第三部分是本章小结,以列表的方式对本章中所用到的命令进行总结,以便读者查阅。
如下面结构概述所述,各章实验内容都对CCNP有所涉猎,各位学员倘有疑惑,可以翻阅相关CCNP的资料书籍以期达到更加深入的理解。
学习网络技术最好的方法便是亲自动手做实验,希望大家能够在实际环境中完成所有实验,熟练掌握配置命令;网络上提供了模拟器,希望学员回去之后可以多用模拟器模拟网络环境,熟悉配置命令。
第一和第二个实验是关于无线局域网演示、网线制作和路由器基本使用,为以后的六个章节的实验打下基础。
实验三、四主要关于路由协议的配置,在路由器上进行静态路由、RIP、IGRP和单区域OSPF的基本配置,此部分知识点在CCNP课程中发展为第五学期课程――高级路由技术; 实验五介绍了网络环境中经常用到的一种安全控制技术――IP访问控制列表,还涉及到了TCP/IP协议栈的相关知识;
实验六、七是关于交换机的基础配置以及VLAN的配置,本知识点在CCNP课程中发展为第七学期――多层交换技术;
实验八介绍了当今流行的两种广域网技术帧中继和NAT技术,本知识点在CCNP课程中发展为第六学期――远程接入技术。
五类非屏蔽双绞线价格相对便宜,组网灵活,在中国的网络布线中,使用非常广泛。无线局域网较之传统有线局域网具有安装便捷、使用灵活和易于扩展等特点,近年来,随着适用于无线局域网产品的价格正逐渐下降,相应软件也逐渐成熟,在现在网络建设中使用越来越广泛。这两部分的内容作为Cisco网络技术的基础是需要大家了解掌握的。
本节实验我们向大家介绍使用工程布线中常用的工具制作交叉线和直通线以及演示无线AP的配置。
大多数局域网使用非屏蔽双绞线(UTP—Unshielded Twisted Pair)作为布线的传输介质来组网,网线由一定距离长的双绞线与RJ45头组成。
双绞线可按其是否外加金属网丝套的屏蔽层而区分为屏蔽双绞线(STP)和非屏蔽双绞线(UTP)。在EIA/TIA-568A标准中,将双绞线按电气特性区分有:三类、四类、五类线。网络中最常用的是三类线和五类线,超五类,目前已有六类以上线。第三类双绞线在LAN中常用作为10Mbps以太网的数据与话音传输,符合IEEE802.3 10Base-T的标准。第五类双绞线目前占有最大的LAN市场,最高速率可达100Mbps,符合IEEE802.3 100Base-T的标准。做好的网线要将RJ45水晶头接入网卡或HUB等网络设备的RJ45插座内。相应地RJ45插头座也区分为三类或五类电气特性。EIA/TIA的布线标准中规定了两种双绞线的线序568B与568A。双绞线的最大传输距离为100米。
所谓差分方式传输,就是发送端在两条信号线上传输幅值相等相位相反的电信号,接收端对接受的两条线信号作减法运算,这样获得幅值翻倍的信号。其抗干扰的原理是:假如两条信号线都受到了同样(同相、等幅)的干扰信号,由于接受端对接受的两条线的信号作减法运算,因此干扰信号被基本抵消。双绞线将两根线扭在一起,按照电磁学的原理分析出:可以近似地认为两条信号线受到的干扰信号是同相、等幅的。两条线交在一起后,既会抵抗外界的干扰也会防止自己去干扰别人。
1.无线局域网(Wireless LAN)是指利用射频、微波或红外线等介质在有限的地域范围内互连设备的通信系统。通常用作有线局域网的扩展来使用。
无线局域网具有使用方便,可以灵活的满足组网的特点。无线局域网也有很多不足,如无线网络速率较慢、价格较高,因而它主要面向有特定需求的用户。目前无线局域网还不能完全脱离有线网络,无线网络与有线网络是互补的关系,而不是竞争;目前还只是有线网络的补充,而不是替换。
2.当前常用的无线网络产品:
蓝牙:是一种开放性短距离无线通信技术标准,主要面向移动设备间的小范围连接,曾一度曾被业界看好,但目前发展有限;
HomeRF:无线家用网络,由Home RF工作组开发的一项无线网络技术,但由于技术没有公开,目前只有几十家企业支持,在抗干扰等方面相对应其他技术而言尚有欠缺;
IEEE 802.11协议簇:IEEE(电气和电子工程师协会)制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中的用户与用户终端之间的无线接入,目前应用最为广泛。
802.11协议诞生于6月,随后不久又扩展了802.11b、802.11a、802.11g等标准; 802.11b:使用开放的2.4GHz直接序列扩频(DSSS),最大数据传输速率为11Mbps,目前应用最广,同时也为Intel迅驰技术所采用;
802.11a:工作在5GHz频带,物理层速率可达54Mbps,传输层可达25Mbps,但目前设备较为昂贵,而且跟802.11b无法向下兼容;
802.11g:新通过的一个无线局域网标准,工作在2.4GHz频段,兼容802.11b,最高可以提供54Mbps的速度。
802.11n将MIMO(多入多出)与OFDM(正交频分复用)技术相结合而应用的MIMO OFDM技术,提高了无线传输质量,也使传输速率得到极大提升,由目前802.11a及802.11g提供的54Mbps,提供到300Mbps甚至高达600Mbps。 在覆盖范围方面,802.11n采用智能天线技术,通过多组独立天线组成的天线阵列,可以动态调整波束,覆盖范围更大。在兼容性方面,802.11n采用了一种软件无线电技术,它是一个完全可编程的硬件平台,使得不同系统的基站和终端都可以通过这一平台的不同软件实现互通和兼容,因此,802.11n可以向前后兼容,而且可以实现WLAN与无线广域网络的结合,比如3G。
〚19〛路由交换与技术实习总结
也许很多人对静态路由与动态路由协议还不是特别的了解,这里我们主要介绍RIP路由协议、OSPF路由协议,静态路由是在路由器配置的固定的路由表。除非网络管理员干预,否则静态路由不会发生变化。
由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。静态路由的优点是简单、高效、可靠。在所有的路由中,静态路由优先级最高。当动态路由协议与静态路由发生冲突时,以静态路由为准。动态路由协议是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。它能实时地适应网络结构的变化。如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。动态路由协议适用于网络规模大、网络拓扑复杂的网络。当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。
静态路由和动态路由协议有各自的特点和适用范围,因此在网络中动态路由协议通常作为静态路由的补充。当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由协议。根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。这里的自治域指一个具有统一管理机构、统一路由策略的网络。自治域内部采用的路由选择协议称为内部网关协议,常用的有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。下面分别进行简要介绍。
RIP路由协议
RIP协议最初是为Xerox网络系统的Xerox parc通用协议而设计的,是Internet中常用的路由协议。RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。RIP使用非常广泛,它简单、可靠,便于配置。但是RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的.目的地均被标记为不可达。而且RIP每隔30s一次的路由信息广播也是造成网络的广播风暴的重要原因之一。
OSPF路由协议
80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。它是网间工程任务组织(IETF)的内部网关协议工作组为IP网络而开发的一种路由协议。0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。
与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。这就大大减少了网络开销,并增加了网络的稳定性。当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。
BGP和BGP-4路由协议
BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。为了满足Internet日益扩大的需要,BGP还在不断地发展。在最新的BGp4中,还可以将相似路由合并为一条路由。
路由表项的优先问题
在一个路由器中,可同时配置静态路由和一种或多种动态路由协议。它们各自维护的路由表都提供给转发程序,但这些路由表的表项间可能会发生冲突。这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其它路由表表项与它矛盾时,均按静态路由转发。
〚20〛路由交换与技术实习总结
设计传真 服务器 的关键是实现传真的路由,由于传真通信规程T.30建议中没有关于传真路由的定义,要实现传真的路由必须借助辅助的手段。目前有几种办法可以实现传真的路由。 ISDN/DID 路由可靠 使用ISDN或DID,用户可以方便地获得属于自己的传真号码而无须再
设计传真服务器的关键是实现传真的路由。由于传真通信规程T.30建议中没有关于传真路由的定义,要实现传真的路由必须借助辅助的手段。目前有几种办法可以实现传真的路由。
使用ISDN或DID,用户可以方便地获得属于自己的传真号码而无须再架设单独的物理线路。从电信局申请ISDN或DID服务后,用户会获得一组电话号码,然后将号码分配给用户或部门,再安装相应的ISDN或DID卡。当有传真拨入时,ISDN或DID卡会自动检测对方拨的是哪一个号码,并将号码通知给传真服务器。传真服务器查询用户数据库,然后将传真转给拥有该号码的用户,如图1所示。
ISDN/DID 路由是最可靠的自动路由方式,但实施成本较高。
配合适当的OCR(光学字符识别)软件,可以实现OCR路由。收到传真以后,按照收件人的姓、名、部门、传真号码等关键词进行识别。识别成功的直接转给收件人,不成功的提交给管理员或打印机,
OCR路由的质量取决于OCR软件。一般来说,打印字符的识别率要高于手写字符,采用标准的传真格式也有助于提高识别率。
Line路由是指利用多条物理线路实现路由。比如为4个部门申请了4条传真线路,则各部门就会自动收到发给自己的传真,惟一的要求是传真服务器必须具备多线路支持的能力。有些传真服务器支持Modem,通过多功能卡可最多接32个Modem。
DTMF(双音多频)路由要求发送方在发送传真时先输入一个分机号,传真服务器根据分机号判断收件人是谁。要实现DTMF 路由,首先传真服务器的硬件必须支持DTMF检测,如果是Modem则必须支持语音。其次,当线路接通以后要通知发送方如何输入DTMF,一般是播放欢迎语,如“欢迎致电某某公司,发送传真请直接输入4位分机号”。对方输入4位分机号后,系统到数据库中查找与之对应的用户,如果用户存在,则启动传真接收程序;如果用户不存在,则提示对方重新输入或退出,如图2所示。
CSID 或Sender ID路由是利用传真机ID实现路由的一种方式。一般传真机都可设定表明自己身份的ID,如Hualu代表中国华录。这样就可以根据来电的ID将传真转给相应的收件人,如王晓敏负责与华录联系,则来自华录的传真自动转给他。
CSID 或Sender ID路由需要传真服务器的硬件支持才可以实现。
-
想了解更多【路由交换与技术实习总结】网的资讯,请访问:路由交换与技术实习总结