一起合同网

导航栏 ×

相似形课件(收藏十一篇)_相似形课件

发布时间:2023-06-18

相似形课件(收藏十一篇)。

◆ 相似形课件

我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;

可对面积的比有争议,有的说等于相似比,有的说等于相似比的`平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。

这个“猜想”不是凭空瞎猜,而是在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯。

◆ 相似形课件

一、教学目标

1.掌握相似三角形的性质定理2、3.

2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理的应用.

2.教学难点:是相似三角形的判定与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

叙述相似三角形的性质定理1.

[讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2.

性质定理2:相似三角形周长的比等于相似比.

同样,让学生类比“全等三角形的面积相等”,得出命题.

“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.

性质定理3:相似三角形面积的比,等于相似比的平方.

注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.

(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是,它们的面积之经不一定是,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.

例1已知如图,∽,它们的周长分别是60cm和72cm,且AB=15cm,,求BC、AB.

此题学生一般不会感到有困难.

例2有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.

解:设原地块为,地块在甲图上为,在乙图上为.

学生在运用掌握了计算时,容易出现的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如:

1.本节学习了相似三角形的性质定理2和定理3.

2.重点学习了两个性质定理的应用及注意的问题.

七、布置作业

教材P247中A组4、5、7.

八、板书设计

◆ 相似形课件

相似形课件

随着时代的发展,科技逐渐改变人们生活的方方面面,教育也不例外。在教育领域中,课件的应用越来越普及。在数学教育中,相似形是一个重要的知识点,我们可以利用课件来帮助学生更加深刻地理解和掌握相似形的知识。本文将从课件设计中的主题、内容和教学方法三个方面探讨如何设计相似形课件。

一、主题

相似形是指两个形状虽然大小不同,但是形状结构相似的图形。在课件设计中,我们可以以“寻找相似之处”为主题。通过寻找不同大小的图形的共同特征,让学生可以更好地理解相似形的概念,并且掌握相似形的判定方法,为后续的学习提供坚实的基础。同时,该主题还可以培养学生的比较、分析和归纳能力,提高学生的思维水平。

二、内容

在课件设计中,相似形的内容可以分为以下三个部分:

1.相似形的定义:

通过图片、文字等形式简明扼要地介绍相似形的概念,让学生从概念入手认识相似形。

2.相似形的性质:

引导学生通过观察、比较相似形的特点,归纳总结相似形的性质,并用图片、文字等形式呈现在课件中,让学生可以形象地理解相似形的性质。

3.相似形的判定:

在课件设计中,可以借助多媒体技术,通过提示、思考等方式让学生自主思考如何判定相似形,并在课件中提供难易适宜的相关问题,辅助学生理解、掌握相似形的判定方法。

三、教学方法

在相似形课件的设计中,教学方法具有重要的作用。以下是几种适合相似形课件教学的方法:

1.引导性问题:

在相似形课件中,可以通过提出一些引导性问题,引导学生思考和讨论,从中抽象出相似的共同特征,培养学生的分类能力。

2.故事配图:

故事配图可以让学生在轻松的环境下深入理解相似形概念和性质,增强学生的主动性和兴趣性,例如讲述大石头“相似”的故事,引导学生探究其中的相似性质。

3.多样化展示:

可以通过多种形式,如图片、计算表格、互动音频等方式多样化展示相似形的教学内容,让学生可以全面了解相似形及其相关知识。

总之,相似形课件的设计需要充分考虑学生的认知特点和教学需要,注重培养学生的思维能力和创造力。通过优秀的相似形课件的设计,让学生能够更好地理解相似形概念和性质,提高数学学科得分和学生的综合素质。

◆ 相似形课件

根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,以问题导入,循序渐近,由浅入深,从单一到综合,以逐步提高学生应用能力。另外本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。

教学亮点:教学过程中始终穿插一条主线:“基本图形”的巧妙应用,一条副线:培养学生学会看图。教学中,通过一系列的活动调动起学生的积极性,让学生亲身体验知识形成的过程。另外,图形不同的变化形式也体现了数学的转化思想,习题的设计选用了近几年的中考题,拉近了教学与中考的距离。

在这一堂课中,我觉得有几点做的还是比较好的:

一、以多种形式(组合条件、添加条件、作相似三角形、练习等)强化学生对三角形相似判定的理解,并起到了一定的效果。

二、真正关注到中等偏下的学生,课堂中设计的问题有三分之二是针对这一部分学生,并在课堂中也正是让他们表现的。

三、营造了和谐轻松的课堂氛围,使一些平时从不发言的同学也在课堂中表达了自己的见解。

当然在教学过程中也反映出了一些问题:

一、题量过大,课堂时间安排较紧,有些问题落实的还不够深入。

二、出示了几道中考题,虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,对中考命题方向进行研究和探索,仅是为做题而做题。

在以后的教学中,我会更加深入在研究《考纲》和学生,使复习课的效率更加的理想。

◆ 相似形课件

图形的相似性是几何学中一个重要的概念,也是数学教学中的重要内容之一。随着科技的发展,电子课件已经成为现代教学中广泛应用的教学工具之一。本文将根据标题为“图形的相似课件”,从什么是图形的相似性、相似性的定义和性质、相似三角形的判定条件和相关定理等方面详细介绍图形的相似性。希望通过本文的阅读,读者能够对图形的相似性有更加深入的了解。


一、什么是图形的相似性?


图形的相似性是指两个或多个图形在形状上相似的性质。当两个图形的形状相似时,它们的对应的两条边之间的比值是相等的。在图形的相似性中,我们主要关注于两个方面,即边的相似性和角的相似性。


边的相似性:如果两个图形的对应边的比值相等,那么这两个图形是边的相似。


角的相似性:如果两个图形的对应角相等,那么这两个图形是角的相似。


二、相似性的定义和性质


定义1:如果两个图形的边的比值相等,那么我们称这两个图形是全等的。


定义2:如果两个图形的边的比值相等,并且对应角相等,那么我们称这两个图形是相似的。


性质1:如果两个三角形相似,那么它们的角的度数相等。


性质2:两个相似图形的对应边的比值等于任意一个边与另一个边相似的对应边的比值。


性质3:两个相似图形的对应边的比值等于它们对应角的正弦比。


三、相似三角形的判定条件和相关定理


定理1:如果两个三角形的对应角相等,那么这两个三角形是相似的。


定理2:如果两个三角形的对应边的比值相等,那么这两个三角形是相似的。


定理3:如果两个三角形的一个角相等,并且两个对应边的比值相等,那么这两个三角形是相似的。


定理4:两个角分别相等的两个三角形,如果在另外两个角中,两个边的比值相等,那么这两个三角形是相似的。


通过以上定理,我们可以得出相似三角形的判定条件,即一个三角形的对应角相等或两个三角形的对应边的比值相等。


结语


图形的相似性是几何学中重要的概念,对于数学教学来说也是一项关键的内容。通过相似性的学习,我们可以深入理解图形的性质和特点,为后续几何学的学习提供基础。相似性的学习过程中,通过图形的相似课件帮助学生更清晰地理解概念,利用图形比较的方式加深对相似概念的理解,提高学习效果。


相似性的学习不仅能够培养学生的逻辑思维能力,还可以提高他们的观察力和解决问题的能力。同时,通过图形的相似课件的运用,学生可以更好地把握学习进度,自主学习,提高学习效率。因此,教师可以在教学过程中充分利用图形的相似课件,提供生动、具体和实用的案例,激发学生学习的兴趣,促进学生探究的欲望,从而提高学生的学习效果。

◆ 相似形课件

一、背景分析

《平面几何中的动态问题》这节课是复习了相似三角形的应用后的一节延伸课。“相似”,可以说是让学生又爱又恨的。爱,是因为它很重要――“不得不爱”;恨,是因为它的难度,特别是与其他知识(如与函数类)结合的综合题,更甚者出现动点问题等等,看着是――“像雾像雨又像风”。

复习课本身的弹性非常大,有“海阔凭鱼跃,天高任鸟飞”的空间。而在这节复习课中,教师就很好地利用了复习课的广阔空间让学生对这又爱又恨的“相似”能有更深一层的了解。

下面就这节课的设计谈谈自己的一些体会。

二、教学片断

1.温故知新:

问题一、如图:AE⊥AB 于点A,BF⊥AB于点 B,G为 AB上一点,问S AEG 与 SBFG相似吗?

生:不能,因为在这两个三角形中,只有∠A=∠B=Rt∠一个条件,条件不够。

师:那么需要增加什么条件,SAEG与SBFG才会相似?

生:增加∠E=∠F。

生:增加AE:BF=AG:BG或AE:BG=AG:BF。

生:增加EG⊥GF

引导学生要判定两个三角形相似,在已知一对角对应相等的条件下,要增加另一对应角相等或夹等角的两边对应成比例。

(这是相似三角形中非常常见的一个图形,而且整节课也是围绕着这个图形而展开,所以在此处体现了从“一般到特殊”的数学思想,让学生更深切地体会到了“EG⊥GF”这个条件的重要及作用所在)

师:若EG⊥GH交BF于点H,那么SAEG与SBGH一定相似吗?

生:SAEG与SBGH一定相似。

师:(运动点G)当点G的位置变化时,SAEG 与 SBGH还相似吗?

生:只要满足EG⊥GH,SAEG与SBGH还相似,跟点G的位置没关系。

师:那么请大家写出SAEG与SBGH相似的理由。

(“由静到动”――体现了教师从基础到拔高的一个过程,更是在教学中渗透由静到动,再从由动到静入手去解决的数学方法。为后面的综合题打下基础。)

2.知识运用

问题2、如图:正方形ABCD中,AB=4,E为边AD上的一个动点,EF⊥BE交边CD于点F。

(将原来的基础图形放置于正方形中。有了前面的铺垫,学生看此题时便有了“主心骨”,而不再是“像雾像雨又像风”。)

师:当点E在边AD上运动时(运动点E),

请观察图中那些线段的长度在变化?

生:有AE、DE、DF、CF、BE、EF、BF的长度在变化。

师:也就是说这些线段都会随点E的变化而变化,是吗?

生:是的。

(打出第Ⅰ小题)

Ⅰ、设AE=X,DF=Y,求Y关于X的函数关系式(写出自变量X的取值范围)

生:由问题1知道本题的SAEB∽SDFE,可得AB:DE=AE:DF(板书,求出解析式)

师:(运动点E)当点E在边AD上运动,判断DF是否有最大值?

(打出第Ⅱ小题)。

Ⅱ、①判断DF是否有最大值,若有请求出最大值,否则说明理由。

②此时BF达到最大还是最小?求出这个最值。

(学生观察图形、讨论)

生:观察图形可知,当点E运动到边AD的中点时,DF的长度最大,BF达到最小。

师:那怎么才能求出这些最值呢?

生:利用第一小题得到的二次函数,再用顶点公式求。

师:请大家动手写出过程,求出这两个值。

(学生在练习本上求出DF的最大值和BF的最小值)

问题3、如图:矩形OABC的边OA、OC在坐标系上,

B(4,3),D为AB边上的一个动点,过点D的反比例

交边BC于点E,连接OD、DE。

师:(运动点D)观察图形,当点D在AB边上运动时,E点作怎么样的变化?

生:E点随着D点的变化而变化。

师:请大家讨论,E点和D点之间存在怎样的关系,SAOD和SDBE还相似吗?

(学生观察图形、讨论)

有说SAOD和SDBE相似的,也有说不相似的。最后有学生得出结论。

生:SAOD和SDBE不相似,因为OD和DE不一定垂直了。

(此处的设计又从特殊的垂直回到了一般,而相似需要垂直的这种基本图形也在无声无息中已深深地酪在了学生的脑海中了)

师:那么,这两个点之间存在什么关系呢?

生:它们始终在同一个反比例函数图像上。

Ⅰ、当D为边AB的中点时,求点E的坐标。

生:当D为边AB的中点时,可得D(2,3),所以可求出反比例函数 ,又因为点E的横坐标为4,可求出E(4,1.5)。

师:好,怎么才能求下面这个关系式呢?(展示出第Ⅱ小题)

Ⅱ、设AD的长为t,求四边形OCED的面积S关于t的函数关系式。

学生在解答本小题时,遇到了困难,思维受阻,讨论后学生提出了问题。

生:要求S关于t的函数关系式,应该用矩形的面积减去SAOD和SDBE的面积,但SDBE的面积很难用t表示出来。该怎么办?

大部分的学生茫然。继续讨论……

师:(教师提示)SDBE的面积要用t表示出来,则需要表示出哪些量?

继续讨论,最后,有学生分析后回答。

生:当AD的长为t,可得D(t,3),所以可求出反比例函数 ,又因为点E的横坐标为4,可求出E(4, ),所以可得BE为(4-)。

说到这里,学生们恍然大悟。解答、板演……

Ⅲ、当DE恰好是SOAD的外接圆的切线时,求四边形OCDE的面积。

(启动几何画板,运动点D)

学生观察图形,讨论……

(教师此处的设计可谓是整节课的高潮,当所有的人觉得问题3的设计似乎跟本节课的.基础相似图形不太有关系、有些偏离轨道时一时锋回路转出现了第Ⅲ小题,使得整堂课看似“形散”而实质“神不散”。成了关键的点睛之笔)

生:因为∠DAO为直角,所以OD为SAOD外接圆的直径,当DE是SOAD的外接圆的切线时,可得OD⊥DE,所以有SAOD和SDBE相似,求出这时t的值,再代入第Ⅱ小题函数关系式就可以求了。

学生解答、板演……

最后老师进行课堂总结。

三、反思:

现代心理学认为:主体参与性是促进学生学习的原始性机制。只有让学生成为课堂教学活动的主体,才能使学生在教学活动中分享应有的权利,承担相应的义务。教学是一种动态的过程。只有把学生多种感官调动起来,协同操作,才能得到良好的学习效果。所以转变学生的学习方式是这次课程改革的一项重要内容,而学生的学习方式转变,必然引起教师教的方式转变。我在参与新课程实验中发现,有的教师对新课程的“教”感到茫然不知所措,甚至对教师必要的讲解产生怀疑。由原来的“灌”一下子到了整体的“放”,这也让更多的学生一时盲然。《数学课程标准》中对师生角色的定位是“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”,由此我们应该认识到在新课程中不仅需要教师引导,而且对教师引导提出了更高的要求。

1、促使学生从“重结果”到“重过程”

本节课教师主要从以下几个方面对学生进行引导:

“动眼”,利用多媒体和几何画板,让图形动起来,唤起学生看的兴趣,进而训练学生全面、细致观察的能力;

“动口”,教师注意创造学生发言的机会,遇到问题先交流,合作探讨,再回答问题,使学生会说,从而培养学生语言表达能力;

“动脑”,遇到问题教师不是直接给出结论,而是让学生先思考,再分析问题,再让学生来提出问题和回答问题,让学生形成良好的思维品质,培养思维能力;

“动手”,学生分析问题后,在动手解答问题,在解题的步骤和格式上培养学生良好的解题习惯。

“动耳”,教师通过总结学生的回答,并加以引导,归类,让学生掌握分析问题的思路和解题的思想方法。

如在问题2中的设计很明确,让学生在动点问题中体会函数的最值。而且前面的引导非常不错,让学生通过几何画板演示动态的过程让学生体会在这个过程中哪些量会变,然后出示第Ⅰ小题让学生顺理成章地用函数来解决这些变量之间的关系,做到了让学生主动参与探究过程的效果。

但在问题2中第Ⅱ题的引导上,教师做得明显很不足。而且有了第Ⅰ小题的铺垫,很有可能会有学生直接求y的最大值。 这就很容易走入我们教学误区“重结果大于重过程”。所以在此处建议教师媒体演示E点运动,问学生:“E点从左往右运动时,线段DF的长度是怎么变化的?” 学生会从动态图中看到DF先是越来越长,接着又越来越短。从而顺理成章地得出DF有最大值。这样不仅避免了上面的误区,由学生得出DF有最小值或最大值更有利于学生自主地去探索这个最值。而在第Ⅱ小题处,在学生回答出“当点E运动到边AD的中点时,DF的长度最大,BF达到最小。”时,教师不应问怎么求最值,而应先问:“为什么是点E运动到边AD的中点时呢?”其实这个学生回答得非常好,但有很多学生会不理解为何会是中点,包括这个学生他本人可能也不是真正地明白为何是中点,而只是从图中看出,主观上觉得是中点。所以教师在此处的追问就显得尤为重要。此时再引导学生其实就是当x取何值时y有最大值。所以适时的引导和追问,能使学生的思维过程暴露出来,从而实现从“重结果”到“重过程”。

2、促使学生从“思维受阻”到“思维畅通”

如果说引导学生“说过程”是重点,那么引导学生“想过程”则是关键。在遇到难题时学生会“冷”会无所适从,而有些教师此时就会拼命讲解,用自己的讲解代替了学生的思考。从而教师越来越热,学生越来越冷。形成了“冷”“热”两重天。

教师的引导,既体现在一堂课的整体设计上,也体现在一个个小环节的局部处理上。从这

◆ 相似形课件

相似三角形的性质教学反思

本章学习的重点,是相似三角形的概念、性质与判定定理,还有三角形一边的平行线的性质与判定定理,以及向量的线性运算。

先通过对实物图形的放大与缩小的直观认识逐步形成相似形的概念,先定性描述再揭示其本质特征.由于图形的相似与比例线段密不可分,因此在形成相似形的概念之后,安排学习比例线段,进而讨论三角形一边的平行线的性质与判定以及平行线分线段成比例定理,

为研究相似三角形提供了必要的知识准备。

而后给出相似三角形的定义,说明了有关概念,明确了相似三角形的符号表示和相似比的意义.然后,通过对三角形一边的平行线问题的进一步思考,得到相似三角形的预备定理.再通过对判定全等三角形所需条件进行分析,类比全等三角形的判定方法,提出了关于相似三角形判定的四个问题;通过对四个问题的探究,得到三个一般三角形相似的判定定理和一个直角三角形相似的判定定理.

上相似三角形的性质,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的`猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。

在学习判定时就有了一些判定与性质综合运用的题目,学生感到有一定的难度,所以只实际应用时,尽量开阔学生的思维方法。

一节几何课,如果只是简单的出示定理、证明定理、讲例题、做练习,学生被动的听讲、单纯地记忆、模仿地做练习,这样不利于培养学生的创造性思维,而且影响学生数学能力的提高。如果时常诱导学生积极探索、思考,达到既能掌握知识,又能提高能力,才能使学生学会学习。

在具体教学过程中,由于自己没有放得开,搞的学生也被带得紧张兮兮的,课堂气氛有点沉闷,与我的初衷相悖。可能如果在平时,气氛会更加自然轻松点。在今后的教育教学中,要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

◆ 相似形课件

相似三角形的判定定理教学设计

一、教学目标

1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.

2.掌握“两角对应相等,两个三角形相似”的判定方法.

.能够运用三角形相似的条件解决简单的问题.

二、重点、难点

1.重点:三角形相似的判定方法1

2.难点:三角形相似的判定方法1的运用.

三、课堂引入

1.复习提问:

(1)我们已学习过哪些判定三角形相似的方法?

(2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由.

(3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题.

(4)教材P48的探究3.

四、例题讲解

例1(教材P48例2).

分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似.

证明:略(见教材).

例2(补充)

已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.

分析:要求的是线段

DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的'判定方法来证明这两个三角形相似.

五、课堂练习

下列说法是否正确,并说明理由.

(1)有一个锐角相等的两直角三角形是相似三角形;

(2)有一个角相等的两等腰三角形是相似三角形.

六、作业

1.已知:如图,△ABC的高AD、BE交于点F.

求证:AF/BF=EF/FD.

2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.

(1)求证:

ACBC=BECD;

(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.

◆ 相似形课件

今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。

一、说教材

从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述

1、本课内容在教材中的地位

本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。

从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。

2.学习目标

知识与技能方面:

探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

过程与方法方面:

培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。

情感态度与价值观方面:

让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

3.教学重点、难点

立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。

教学重点:相似三角形、相似多边形的性质及其应用

教学难点:①相似三角形性质的应用;

②促进学生有条理的思考及有条理的表达。

4.学情分析

从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。

对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。

大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。

5.教学准备

教师:直尺、多媒体课件

学生:必要的学习用具

二、说教学策略

从设计的指导思想、教学方法、学习方法三方面阐述

新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。

采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。

有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。

三、说教学程序

(一)类比研究,明确目标

师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?

生:已经研究了相似三角形的定义、判别条件。

师:那么我们今天该研究什么了?

生:相似三角形的性质。

设计意图:

从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。

(二)提出问题,感受价值,探究解决

师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。

生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。

师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?

设计意图:

我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。

师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。

师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:

给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?

师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?

生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。

设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。

师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。

情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)

(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)

(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。

结论:相似三角形的周长之比等于相似比。

情境二:

师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?

生:面积比问题。

师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。

设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。

(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。

(三)拓展研究,形成策略,回归生活

拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)

拓展研究二:由相似三角形研究拓展到相似多边形研究

师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。

情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。

说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。

拓展结论1:相似多边形的周长之比等于相似比;

相似多边形的面积之比等于相似比的平方。

(结合相似五边形研究过程)

拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;

相似多边形中对应对角线之比等于相似比;

进而拓展到:相似多边形中对应线段之比等于相似比等。

回归生活一:

师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?

回归生活二:(以师生聊天的方式进行)

其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?

生:相似比的立方。

设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”

而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。

(四)操作应用,形成技能

课内检测:

1.已知两上三角形相似,请完成下面表格:

相似比2

对应高之比0.5

周长之比3 k

面积之比100

2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。

设计意图:落实双基,形成技能

(五)习题拓展,发展能力

已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。

(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?

(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?

答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。

(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:

①当点P为AB中点时,矩形PMNQ的面积最大;

②当PM=PQ时,矩形PMNQ的面积最大。

你认为哪一个猜想较为合理?为什么?

(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。

设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。

(六)作业(略)

另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。

◆ 相似形课件

相似三角形的应用分两块内容,一块是相似三角形的周长比和面积比与相似比的关系,另一块是相似性质在实际生活中的应用。第一个应用总的来说是比较简单的,没有太难,太偏的问题,但实际应用的难度就大大提高了,涉及到的实际问题,不仅题意难以理解,还有就是问题复杂,学生摸不找头脑,找不到解体思路,像我新课后完成后布置学生完成的课后作业题2、5、6题,有些成绩较好的学生跑到我办公室说:“老师,你布置的书本作业我一个都做不来。”

第一块内容虽然相对而言比较简单,但学生也有比较容易错的地方,比如说题目条件是两个相似三角形的面积比是多少,学生往往会直接将其开方得到两个相似三角形相似比是多少,这样做的原因就是学生还没真正理解“相似的性质”——先要有相似,才有比例。另外,在相似性质的应用中有的时候还会用到相似比等于对应线段的比(比如说对应边上的高的比),用到这个性质的题目比较多,特别是在这样一个图形中:直角三角形里面放一个长方形或正方形。学生刚开始的时候不容易找到。相似性质的应用也常常与“比例尺”问题结合起来,学生在单位的换算上经常出错,关键是科学计数法还不熟练。相似性质应用最多的地方就是求面积问题,还有类问题就是三角形与三角形之间虽然不相似,但它们等高,所以它们的`面积比等于它们底边的比,也就等于它们底边所在的一组三角形的相似比。

在第二块内容的设计中,我主要以书本上的例题为主导,由于时间关系通过例题介绍了两种构造相似三角形求出树高的方法。特别是第一种方法中,要用到科学中入射角等于反射角的原理,在以后学生的练习中,发现个别学生不知道这个原理,还发现部分学生将这个图形与“平行预备定理”的图形相混淆了,由平行预备定理直接得出这个图形中的两个三角形相似。而在第二种方法中,要让学生了解:“同一时刻太阳光线是平行的”这个原理,有些不是很细致的学生在听课时就忽略了这一点,所以在自己解题时不知道该怎样证明这两个三角形相似了。还有较多的学生就是在解答这类实际问题时,经常忘了要先证明三角形相似再应用对应边成比例,马上就比例式出来计算了。

◆ 相似形课件


在数学学科中,图形的相似是一个重要的概念。它涉及到几何形状之间的相似性,可以帮助理解几何图形的特性和属性。本课件将详细介绍图形的相似性,包括相似性的定义、判定方法以及相似图形的性质和应用。


一、相似性的定义:


1. 相似性的概念:两个图形相似意味着它们形状相同,但是尺寸可能不同。换句话说,它们的比例关系相同。


2. 相似性的符号表示:当两个图形相似时,用符号“∽”来表示相似。例如,图形A与图形B相似可以表示为A∽B。


二、相似性的判定方法:


1. AA判定法:如果两个三角形的两个角相等,则这两个三角形相似。


2. SAS判定法:如果两个三角形的两个角分别相等,并且它们对应的边成比例关系,则这两个三角形相似。


3. SSS判定法:如果两个三角形的三条边分别成比例关系,则这两个三角形相似。


三、相似图形的性质:


1. 边长比例性质:如果两个图形相似,则它们的对应边的长度比例相等。比例关系可以表示为a:b=c:d。


2. 面积比例性质:如果两个图形相似,则它们的面积比例等于对应边长度的平方比例。比例关系可以表示为A1:A2=(a1/a2)²


3. 周长比例性质:如果两个图形相似,则它们的周长比例等于对应边长度的比例。比例关系可以表示为P1:P2=a1/a2


四、相似图形的应用:


1. 测量不可达物体的高度:通过测量一个物体和它的影子之间的比例关系,可以计算出不可及物体的高度。


2. 三角测量法:利用三角形的相似性,可以在实际测量中根据已知的长度和角度计算出其他未知的长度和角度。


3. 绘制比例图:通过相似图形的特性,可以将具有不同比例的对象准确地绘制成具有相同比例的图形,从而更好地表达信息。



图形的相似性是数学中一个重要的概念,它能够帮助理解几何形状的特性和属性。通过相似性的判定方法,可以判断两个图形是否相似,进而利用相似图形的性质解决各种实际问题。相似图形的应用广泛,不仅可以应用在数学领域,还可以在物理、地理、建筑等领域发挥作用。

    一起合同网小编为您推荐相似形课件专题,欢迎访问:相似形课件

文章来源:https://www.hc179.com/hetongfanben/157605.html