一起合同网

导航栏 ×

指数函数性质教案(模板17篇)_指数函数性质教案

发布时间:2023-01-15

指数函数性质教案(模板17篇)。

⬬ 指数函数性质教案

一、教材分析:

本节课学习的主要内容是画反比例函数的图象,让学生经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征。反比例函数的图象是在学生已经知道了研究函数图象的一般方法,以及一次函数的图象是一条直线的基础之上进一步去研究的。同时,反比例函数的图象也与众不同。针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律。

二、教学目标:

知识与技能:

(1)作反比例函数的图象。

(2)掌握反比例函数的图象与性质。

过程与方法:

逐步提高从函数图象中获取信息的能力,和数形结合的能力。

情感、态度与价值观:

培养学生积极参与,乐于探究,善于交流的意识和习惯。

三、教学重难点

教学重点:学习反比例函数图象的画法,概括反比例函数图象的共同特征。

教学难点:从反比例函数的图象中归纳总结反比例函数的主要性质。

四、教学过程:

(一)创设情境、提出问题

我们已经知道一次函数的图象是一条直线,那么反比例函数(k为常数,k≠0)的图象是什么呢?猜猜看,应该怎么画呢?(让学生根据已有的知识经验,回忆画函数图象的一般方法与步骤,类比一次函数的图象进行猜想)

(二)动手实践、解决问题

1、画图:画出反比例函数的图象在教师的引导下,让学生通过亲自动脑、动手实践去科学地验证自己的猜想,培养学生科学的态度与精神。

师:画函数图象的第一个步骤是什么?

生:列表。

师:(大屏幕投影:表格)根据前面学习一次函数的经验,列表时应注意什么?

生:应注意自变量x的取值范围,本题当中x≠0。

师:是不是把所有的x不等于零的值全都列举出来?

生:不是。

师:那怎么取值呢?(学生讨论)

生:为了便于计算和描点,我们通常取x>0和x<0的一些整数值。

师:(大屏幕投影)那么,对应的y值分别是多少呢?(学生填表、口答答案。)

目的:让学生回忆、类比,注意比较与画一次函数的图象时列表的相同点与不同点。

师:列表之后,我们得到了几组x、y的对应值,即几组有序实数对,如何用直角坐标系中的点把它们表示出来呢?也就是如何描点?

生:以表中x的值作为点的横坐标,y的值作为点的纵坐标依次描点。

①学生描点

②教师利用多媒体课件演示描点的动画过程。

友情提醒:描点可要细心哦!

目的:让学生独立描点,观察描出的点的位置。培养学生细心的良好品质。

师:如何把描出的点连接起来,从而画出它的图象呢?

①学生连接。

②教师利用实物投影仪展示学生成果。

师:这里有同学们画的一些反比例函数的图象,我从中选出了四幅图象,请同学们仔细观察并进行讨论这四幅图象画得对还是不对?如果不对,它们分别错在哪里?为什么?(学生分析讨论)

生:第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原因是:没有注意到自变量x的取值范围是x≠0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。”这种想法对吗?如果不对,错在哪里?为什么?学生分组讨论。学生相互讨论生:除了线段两个端点的坐标满足函数解析式之外,线段上其余各点的坐标都不满足函数解析式。所以用线段连接的方法是错误的。

师:除了已描好的点之外,你还能不能找到其它坐标满足函数解析式的点,比如横坐标在大于1小于2之间?

师:那么,应当用什么样的线来连接呢?

生:应当用平滑的曲线顺次连接。

目的:师生互动、生生互动,让学生充分参与、经历画图的过程,体会知识的形成过程;通过对学生画图个案的评析、多媒体课件填充点的过程演示、以及学生的认真观察、思考,探索得出重要的结论:应当用平滑的曲线顺次连接。学生自发的为自己发现的结论鼓掌,让学生品尝到成功的喜悦,增强学生的自信心。教师利用多媒体课件演示连接的过程:用平滑的曲线先顺次连接第一象限内的各点,得到图象的一个分支;然后再顺次连接第三象限内的各点,得到图象的另一个分支。把两个分支组合在一起就得到了反比例函数的图象。

2、猜想:反比例函数的图象在什么象限?请你在下面的平面直角坐标系内画出它的图象。

师:刚才,我们画出了k=6时,反比例函数的图象。请同学们猜想一下,k=-6时,反比例函数的图象在什么象限?为什么?

生:图象分布在二、四象限。由k=-6得xy=-6所以x、y异号所以反比例函数的图象分布在二、四象限。

3、师:请同学们画图验证自己的猜想。

4、①学生画图验证

②相互交流成果检验自己的猜想是否正确。

目的:让学生先类比k=6时,反比例函数的图象的位置,猜想k=-6时,反比例函数的图象的位置;然后,再独立画图验证自己的猜想。培养学生类比、猜想、说理、独立画图验证的能力。

师:(大屏幕投影:显示画图象的全过程)请同学们观察反比例函数的图象,注意比较与一次函数图象有哪些不同?讨论反比例函数的图象具有那些特征(学生分组讨论)

生:①一次函数的图象是一条直线,反比例函数的图象是由两个分支组成的,而且都是曲线;

②一次函数的图象与x、y轴有交点,反比例函数的图象与x、y轴没有交点;

③反比例函数的图象的两个分支关于原点成中心对称。

④反比例函数的图象的两个分支被坐标轴隔开,它们可以无限地靠近x、y轴,但是永远不能与x、y轴有交点;

师:反比例函数的图象有许多的特征,在今后的学习当中,我们会逐步地去认识它。

设计目的:通过观察图象并比较与一次函数图象的不同点,让学生初步认识具体的反比例函数图象的特征。)

五、本节课你学到了什么?有哪些收获?

生:①画反比例函数的图象的方法

②知道了反比例函数的图象是双曲线

③反比例函数的图象不与坐标轴有交点

④反比例函数的图象是中心对称图形

⬬ 指数函数性质教案

指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数、所以在这部分的教学安排上、我更注意学生思维习惯的养成、特作如下思考:

1、设计应从哪些方面、哪些角度去探索一个具体函数、我在这部分设置了三个环节

(1)由具体的折纸的例子引出指数函数

设计意图:贴近学生的生活实际、便于动手操作与观察。

让学生充分感受我们生活中大量存在指数函数模型、从而便于学生接受指数函数的形式、突破符号语言的障碍。

(2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。

符合学生由特殊到一般的、由具体到抽象的学习认知规律。

(3)通过多媒体手段、用计算机作出底数a变换的图像、让学生更直观、深刻的感受指数函数的图像及性质。

通过引入定义剖析辨析运用、这个由特殊到一般的过程揭示了概念的内涵和外延;而后在教师的点拨下、学生作图观察探究交流概括运用、使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受、同时渗透了分类讨论、数形结合的思想、提高了学生学习数学概念、性质和方法的能力、养成了良好的学习习惯。

2、课堂练习前后呼应、各有侧重、通过问题呈现、变式教学、不但突出了重点内容、把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性、为以后的学习奠定了基础。

3、教学过程设计为六个环节:

1.情景设置、形成概念

2.发现问题、深化概念

3.深入探究图像、加深理解性质

4.强化训练、落实掌握

5.小结归纳、拓展深化

6.布置作业、延伸课堂。各个环节层层深入、环环相扣、充分体现了在教师的指导下、师生、生生之间的交流互动、使学生亲身经历知识的形成和发展过程。

4、通过学案教学为抓手、让学生先学、老师在课前充分了解了学情、以学定教、进行二次备课、抓住学生的学习困难、站在学生学的角度设计教学。

5、学生真思考、学生的真探究、才是保障教学目标得以实现的前提、在教学中、教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间、努力创设一个活动化的课堂才可能真正唤起学生的生命主体意识、引领他们走上自主构建知识意义的发展路径。

⬬ 指数函数性质教案

【典例解析】

令一次函数=﹣x+3中x=0,则=3,

∴点A的坐标为(;

令一次函数=﹣ x+3中=0,则﹣ x+3,

解得:x= ,

∴点B的坐标为( ,0).

∴AB=2 .

∵抛物线的对称轴为x= ,

∴点C的坐标为(,

∴AC=2 =AB=BC,

∴△ABC为等边三角形.

令=﹣ (x﹣ )2+4=0,

解得:x=﹣ ,或x=3 .

∴点E的坐标为(﹣ ,.

△ABP为等腰三角形分三种情况:

①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;

②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;

③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;

⬬ 指数函数性质教案

【知识与技能】

1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

【教学重点】

1.会画y=ax2(a>0)的图象.

2.理解,掌握图象的性质.

【教学难点】

二次函数图象及性质探究过程和方法的体会教学过程.

一、情境导入,初步认识

问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?

问题2 如何用描点法画一个函数图象呢?

【教学说明】

①略;

②列表、描点、连线.

二、思考探究,获取新知

探究1 画二次函数y=ax2(a>0)的图象.

画二次函数y=ax2的图象.

【教学说明】

①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

②从列表和描点中,体会图象关于y轴对称的特征.

③强调画抛物线的三个误区.

误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

误区二:并非对称点,存在漏点现象,导致抛物线变形.

误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

⬬ 指数函数性质教案

一、内容及其解析

(一)内容:指数函数的性质的应用。

(二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。

二、目标及其解析

(一)教学目标

指数函数的图象及其性质的应用;

(二)解析

通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的能力。

三、问题诊断分析

解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。

四、教学过程设计

探究点一:平移指数函数的图像

例1:画出函数 的图像,并根据图像指出它的单调区间.

解析:由函数的解析式可得:

其图像分成两部分,一部分是将 (x-1)的图像作出,而它的图像可以看作 的图像沿x轴的负方向平移一个单位而得到的,另一部分是将 的图像作出,而它的图像可以看作将 的图像沿x轴的负方向平移一个单位而得到的.

解:图像由老师们自己画出

变式训练一:已知函数

(1)作出其图像;

(2)由图像指出其单调区间;

解:(1) 的图像如下图:

(2)函数的增区间是(-,-2],减区间是[-2,+).

探究点二:复合函数的性质

例2:已知函数

(1)求f(x)的定义域;

(2)讨论f(x)的奇偶性;

解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。

解:(1)要使函数有意义,须 -1 ,即x 1,所以,定义域为(- ,0) (0,+ ).

(2)变式训练二:已知函数 ,试判断函数的奇偶性;

简析:∵定义域为 ,且 是奇函数;

探究点三 应用问题

例3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的

84%.写出这种物质的剩留量关于时间的函数关系式.

【解】

设该物质的质量是1,经过 年后剩留量是 .

经过1年,剩留量

变式:储蓄按复利计算利息,若本金为 元,每期利率为 ,设存期是 ,本利和(本金加上利息)为 元.

(1)写出本利和 随存期 变化的函数关系式;

(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.

分析:复利要把本利和作为本金来计算下一年的利息.

【解】

(1)已知本金为 元,利率为 则:

1期后的本利和为

2期后的本利和为

期后的本利和为

(2)将 代入上式得

六.小结

通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?

⬬ 指数函数性质教案

第一步,桌面上打开一个Excel文档

第二步,文档打开的主界面如图

第三步,自然常数e为底的指数函数只有1个参数,number

第四步,我们举例,来更好地说明,需求如图

第五步,输入完整的自然常数e为底的指数函数

第六步,回车后,看到自然常数e为底的指数函数的结果

第七步,将一个结果复制到其他栏,就可以看到所有的结果了。非常简单!



猜你喜欢: 1.excel表格中指数函数如何使用

2.excel怎么使用指数函数

3.Excel使用自然常数e为底的指数函数的方法

4.Excel指数函数怎么用

5.excel指数函数的使用方法

⬬ 指数函数性质教案

9月26、27日两天在舟山第一初级中学参加了为期二天的全员教育培训活动,听了六堂省市级学科带头人上的示范课,感想很多,本以为本次培训又走走过场,并没有实质性的内容,只是点个名,充充数罢了。六堂示范课听下来,还有各位执教老师的设计意图,真是开了眼界,而听了两位教研员的精彩点评,更是有一种“听君一席话,胜读十年书”之慨。

现对张老师执教的《二次函数》谈谈自已的感想。

整节课的学习,张杰老师准备的充分,清楚知道学生应该理解什么,掌握什么,学会什么。整堂课下来,张老师始终是学生学习活动的组织者、指导者和合作者,而学生是一个发现者、探索者,充分有效的发挥他们的学习主体作用。张杰老师是让学生“体会知识”,而不是“教学生知识”,学生成了学习的主人,突出学生的主体地位。以下是我的一些肯定与不同意见及一些不成熟建议。

内容1、(1)肯定意见: 张杰老师在开始的时候并没有讲二次函数的有关性质而是用幻灯片给出:

“例1 请研究函数y=x2-5x+6的图象与性质,尽可能写出结论。”

让学生自己去体会二次函数的有关性质,这样的做法可以让学生自己积极的思考,使学生的思维变的更积极,更主动。体现出张杰老师知道在教学过程中着重发展学生的自主性、独立性和创造性,知道教师的教是为学生的学服务的。所以说从张杰老师这点的想法、做法上看是成功的。

(2)不同意见:但是,如果说这样的做法张杰老师已经有这样的观念了的话,我认为张杰老师的做法不够彻底,下面是张杰老师操作过程的摘记:

“ 师:(出示例题后不到1分钟)想到3种以上的同学请举手;

师:(出示例题后不到1.5分钟)想到5种以上的同学请举手;”

我说的不够彻底就是让学生思考的时间不够,我们虽然知道让学生思考的重要性,也这样做了,我们就要收到一定的效果。所以我们要让学生有充分的时间考虑,放手让学生,促进学生发展。我们要知道我们的对象应该是大多数学生,使大多数的学生有充分的思考时间。

(2)Δ﹥0,在轴上有两个交点……;

…… …… ”

张杰老师给出结论时是充分让学生说出自己的答案,让学生充分表达自己的意见,自己的想法,从而提高学生学习的积极性,这符合人的自然规律,要知道无论是谁都是对自己的东西最感兴趣的,也就是对“我的”最感兴趣,它的最里面一层是我的思想、我的爱好、我的健康、我所要表达的一切,接下去是我的父母、我的班级学校、我的国家……。一个具体的例子:“当你看到一张有你集体照,你首先会看谁呢?这是不容质疑的。”也可以用一个图去表示:

所以说张杰老师抓住了学生的人的固有特性,给学生一个自由的发挥的空间,让学生表达出“我的答案、想法”,使学生的思维变的积极,使课堂气氛变的积极,

使学生的思维从中得到很好的锻炼。从这点来说张杰老师这节是成功的。

(2)不同意见:个上面我们谈到这样做符合人固有的本性是很成功的,但我认为在操作上可以改进一下。张杰老师开始的时候都是叫学生个人来完成,后面几个问题干脆让学生一起来回答, 这样做的后果就是不能让学生感觉到这是“我的答案”,感觉不到同学、老师那肯定的眼光,长此以往课堂的气氛会低迷,学生的思维会变的懒惰。因为的思考的答案可能会得不到肯定,我思考也没用。渐渐的学习的积极性、主动性就会削弱,与我们老师的初衷、教改的意图相违背。可以这样说,张杰老师这节课有突出学生的“我的……”,但没有完全突出最里面的一层“我的思想、别人对我的看法”。

(3)我的建议:每次都让学生站来回答问题,给予他及时的肯定与鼓励,使学生在肯定中变的积极,在肯定中变的自信,在肯定中得到进步。

本节课优点:

1、整体感觉是学习过程逻辑清晰,小组分工明确,学生主体地位体现充分,学生配合好,课堂气氛活跃;

2、学生充分小老师角色非常到位,有讲有问,学生回答积极配合;

3、教师穿插点评、补充、总结、讲解,少好精;

4、整个教学过程分为四部分:基本知识、知识应用、扩展部分、总结部分。前后紧密相连,由易而难,步步推进;

整节课教学思路层次分明,脉络清晰,始终以“二次函数的解析式与图象”及其应用为主线,贯穿于整个教学过程。老师语言精炼,富有亲和力与感染力;师生关系融洽,气氛和谐;重点突出,难点突破,教学目标基本达成。做到了“从一个知识传授者转变为学生发展的促进者;从课堂时间与空间支配者的权威地位,向数学的组织者、引导者和合作者的角色转换”。

我的一些不成熟看法:

1、或许张杰老师在内容上的量处理方面更能使学生容易接受一点,我认为可以分为两节课来完成,内容1:“二次函数的图象及有关性质”,内容2:“怎样求二次函数的解析式”。

2、或许张杰老师在语言上可以简练一些,使学生感到我们的老师的语言不是罗嗦。使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。

3、或许张杰老师的站位可以更恰当一点,不要遮住给学生看的题目,要知道我们的给出的题目是为学生服务的,当我们的学生看不到这些目标——题目时他的思维活动就不能开展。

⬬ 指数函数性质教案

程序一:

#include void fun(int arr){printf(“fun::%d\n”, sizeof(arr));//}int main(){int i = 10;short a = 0;int arr;fun(arr);printf(“%d\n”, sizeof(arr));//40 printf(“%d\n”, sizeof(a++));//2printf(“%d\n”, a);//0printf(“%d\n”, i);//10system(“pause”);return 0;}

请按任意键继续. . .

程序二:

定义一个数组arr,输出arr和&arr的区别#include int main(){int n = 10;int arr = {0};int *p = NULL;int (*q) = NULL;printf(“%d\n”, sizeof(n));//4printf(“%d\n”, sizeof(int));//4printf(“%d\n”, sizeof(arr));//40 printf(“%d\n”, sizeof(&arr));//4printf(“%p\n”, arr);//00D4FACC &arr,它表示数组首元素的地址printf(“%p\n”, &arr);//00D4FACC,它表示数组的地址,这两个表示意义不同p = arr;q = &arr;printf(“p+1=%p\n”,p+1);//p+1=007DF958printf(“q+1=%p\n”,q+1);//q+1=007DF97Creturn 0;}

请按任意键继续. . .

⬬ 指数函数性质教案

二次函数的性质与图像(第2课时)

一 学习目标:

1、 掌握二次函数的图象及性质;

2、 会用二次函数的图象与性质解决问题;

学习重点:二次函数的性质;

学习难点:二次函数的性质与图像的应用;

二 知识点回顾:

函数 的性质

函数 函数

图象 a0

性质

三 典型例题:

例 1:已知 是二次函数,求m的值

例 2:(1)已知函数 在区间 上为增函数,求a的范围;

(2)知函数 的单调区间是 ,求a;

例 3:求二次函数 在区间[0,3]上的最大值和最小值;

变式:(1)已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

(2)已知 在区间[0,1]内有最大值-5,求a。

(3)已知 ,a0,求 的最值。

四、 限时训练:

1 、如果函数 在区间 上是增函数,那么实数a的取值

范围为 B

A 、a-2 B、a-2 C、a-6 D、B、a-6

2 、函数 的定义域为[0,m],值域为[ ,-4],则m的取值范围是

A、 B、 C、 D、

3 、定义域为R的二次函数 ,其对称轴为y轴,且在 上为减函数,则下列不等式成立的是

A、 B、

C、 D、

4 、已知函数 在[0,m]上有最大值3,最小值2,则m的取值范围是

A、 B、 C、 D、

5、 函数 ,当 时是减函数,当 时是增函数,则

f(2)=

6、 已知函数 ,有下列命题:

① 为偶函数 ② 的图像与y轴交点的纵坐标为3

③ 在 上为增函数 ④ 有最大值4

7、已知 在区间[0,1]上的最大值为2,求a的值。

8、已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

9、已知函数 ,求a的取值范围使 在[-5,5]上是单调函数。

10、设函数 ,当 时 a恒成立,求a的取值范围。

⬬ 指数函数性质教案

我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析

1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析

基于对教材的理解和分析,我制定了以下的教学目标:

1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析

1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

⬬ 指数函数性质教案

一、教材分析

1。《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2。教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法设计

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1。创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2。强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3。突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

4。注意数学与生活和实践的联系。数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

三、学法指导

本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

1。再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2。领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

3。在互相交流和自主探

⬬ 指数函数性质教案

教学目标:

1.进一步认识函数的性质,从形与数两个方面引导学生理解掌握函数奇偶性的概念,能准确地判断所给函数的奇偶性;

2.通过函数的奇偶性概念的教学,揭示函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,培养学生从特殊到一般的概括能力,并渗透数形结合的数学思想方法;

3.引导学生从生活中的对称联想到数学中的对称,师生共同探讨、研究,从代数的角度给予严密的代数形式表达、推理,培养学生严谨、认真、科学的探究精神.

教学重点:

函数奇偶性的概念及函数奇偶性的判断.

教学难点:

函数奇偶性的概念的理解与证明.

教学过程:

一、问题情境

1.情境.

复习函数的单调性的概念及运用.

教师小结:函数的单调性从代数的角度严谨地刻画了函数的图象在某范围内的变化情况,便于我们正确地画出相关函数的图象,以便我们进一步地从整体的角度,直观而又形象地反映出函数的性质.在画函数的图象的时候,我们有时还要注意一个问题,就是对称(见P41).

2.问题.

观察函数=x2和=1x(x≠0)的图象,从对称的角度你发现了什么?

二、学生活动

1.画出函数=x2和=1x(x≠0)的图象

2.利用折纸的方法验证函数=x2图象的对称性

3.理解函数奇偶性的概念及性质.

三、数学建构

1.奇、偶函数的定义:

一般地,如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=f(x),那么称函数=f(x)是偶函数;

如果对于函数f(x)的定义域内的任意的一个x,都有f(-x)=-f(x),那么称函数=f(x)是奇函数;

2.函数的奇偶性:

如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性,而如果一个函数既不是奇函数,也不是偶函数(常说该函数是非奇非偶函数),则说该函数不具有奇偶性.

3.奇、偶函数的性质:

偶函数的图象关于轴对称,奇函数的图象关于原点对称.

四、数学运用

(一)例题

例1 判断函数f(x)=x3+5x的奇偶性.

例2 判定下列函数是否为偶函数或奇函数:

(1)f(x)=x2-1; (2)f(x)=2x;

(3)f(x)=2|x|; (4)f(x)=(x-1)2.

小结:1.判断函数是否为偶函数或奇函数,首先判断函数的定义域是否关于原点对称,如函数f(x)=2x,x∈[-1,3]就不具有奇偶性;再用定义.

2.判定函数是否具有奇偶性,一定要对定义域内的任意的一个x进行讨论,而不是某一特定的值.如函数f(x)=x2-x-1,有f(1)=-1,f(-1)=1,显然有f(-1)=-f(1),但函数f(x)=x2-x-1不具有奇偶性,再如函数f(x)=x3-x2-x+2,有f(-1)=f(1)=1,同样函数f(x)=x3-x2-x+2也不具有奇偶性.

例3 判断函数f(x)= 的奇偶性.

小结:判断分段函数是否为具有奇偶性,应先画出函数的图象,获取直观的印象,再利用定义分段讨论.

(二)练习

1.判断下列函数的奇偶性:

(1) f(x)=x+ ;(2) f(x)=x2+ ;

(3)f(x)= ;(4) f(x)= .

2.已知奇函数f(x)在轴右边的图象如图所示,试画出函数f(x)在轴左边的图象.

3.已知函数f(x+1)是偶函数,则函数f(x)的对称轴是 .

4.对于定义在R上的函数f(x),下列判断是否正确:

(1)若f(2)=f(-2),则f(x)是偶函数;

(2)若f(2)≠f(-2),则f(x)不是偶函数;

(3)若f(2)=f(-2),则f(x)不是奇函数.

五、回顾小结

1.奇、偶函数的定义及函数的奇偶性的定义.

2.奇、偶函数的性质及函数的奇偶性的判断.

六、作业

课堂作业:课本44页5,6题.

⬬ 指数函数性质教案

8、对称性:无轴对称:无对称轴中心对称:关于点(kπ/2+π/2,0)对称(k∈Z)。

9、奇偶性:由tan(-x)=-tan(x),知正切函数是奇函数,它的图象关于原点呈中心对称。

10、图像(如图所示)实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π(n∈Z)都是它的对称中心。

在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的'和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。

法兰西斯·韦达(Fran?oisViète)曾在他对三角法研究的第一本著作《应用于三角形的数学法则》中提出正切定理。现代的中学课本已经甚少提及,例如由于中华人民共和国曾经对前苏联和其教育学的批判,在1966年至1977年间曾经将正切定理删除出中学数学教材。不过在没有计算机的辅助求解三角形时,这定理可比余弦定理更容易利用对数来运算投影等问题。

正切定理:(a+b)/(a-b)=tan((α+β)/2)/tan((α-β)/2)

tanA·tanB·tan(A+B)+tanA+tanB-tan(A+B)=0

高等代数中三角函数的指数表示(由泰勒级数易得):

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

⬬ 指数函数性质教案

在整个的教学过程中,始终体现以学生为本的教育理念;始终围绕着本堂课的教学目标;始终围绕着本堂课的重难点;在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。在教学的过程中,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固旧有知识,又为新知识提供了附着点,充分体现学生的主体地位。

具体做法如下:

一、在学校导学案式教学的大环境下,让学生提前在前一个晚上根据学校统一编写的学案,围绕课本进行课前预习,完成学案课前预习部分,让学生对本节内容的知识点有一个初步的认识和了解。

二、在创设问题情境时,除了采用庄子学说的例子,还引用了生活实际中的折叠纸张问题。这种做法充实了实例,让学生体会到数学来源于生活实际。根据前面学过的分数指数幂的运算,学生预习时很容易得到两个具体函数,并让学生观察这两个函数的特点,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。实践证明效果很好。

三、引出指数函数概念后,设置探究题,这是本节的一个难点,为突破难点,提示学生预习时进行小组讨论,课堂展示大胆质疑,深刻认识到底数a的取值范围,若底数为负数,幂出现无意义情况很多不便研究;若底数为1,则无论指数取何值,它总是1,没有对它研究的必要。为了避免上述各种情况的发生,所以对底数有了规定。认识清楚底数a的特殊规定,指数函数解析式的特点。才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。这样做学生真正理解了指数函数的概念。

四、在指数函数图象和性质之前,学案中设置了一个表格,让学生画出问题情境中的两个函数图象,由特殊到一般有利于学生认识指数函数图象,这样也做到了前后呼应。预习时提示学生,我们学习了函数的那些性质,指数函数有这些性质吗?

五、运用指数函数性质比较两个数的大小问题,我在点拨时强调此类问题的三个步骤:

1、构造函数并指明函数的单调区间及相应的单调性;

2、自变量的大小比较;

3、函数值的大小比较。

六、画图验证,结合几何画板演示和学生自主去探究画图,充分发挥了学生的动手能力,体现数形结合的思维方式

如,第(3)题:1.70.3,0.93.1

本小题是前两小题的升华,是函数值具体分布情况的应用。

底数不同,指数也不同的两个幂怎样比较大小?怎样构造指数函数?构造几个?引出中间变量1。数形结合在同一坐标系内画出与的图像,并标出点(0.3,1.70.3),(3.2,0.93.1)。既可以引导学生找到中间变量1,也可以验证答案。

我在本堂课的不足之处:

1、对学生的原有的认知水平掌握不足,因为是早上第一节课,对学生的预习情况了解不够深度,所以没有在课堂上学生掌握的最佳时机充分调动学生的积极性,课堂气氛不是很活跃。

2、因为本校学生的数学素养比较薄弱,本人在讲解新课的时候自己讲得偏多,学生的主体作用体现得不够。

3、指数函数概念部分的教学时间稍多,后面教学过程函数单调性的应用教学时(比较大小)稍显仓促,学生自主探究的时间不够,因此违背了教学设计的初衷。

4、如何将多媒体教学与传统教学方式进行整合从而使课堂教学效果更优化,这将是以后重点研究的课题。就本节课而言,无论板书还是投影,均有些匆忙。而且在作图教学时应该更大激发学生的热情,给他们更多的自主权。在今后的教学中,要在学生合作等方面加强指导,注意平时的培养与提高。

5、课堂教学中,对学生回答的问题,我总是想方设法使之不出一点差错,即使是一些容易产生典型错误的稍难问题。而且发现学生没有按着自己预想的方向回答时,有点沉不住气。不过我稍稍平静后能及时调整过来,再想办法使学生能够理解。

⬬ 指数函数性质教案

一次函数的图像和性质

教学目标:

1.掌握一次函数解析式的特点及意义. 2.知道一次函数与正比例函数关系. 3.理解一次函数图象特征与解析式的联系规律. 4.会用简单方法画一次函数图象。教学重难点:

1.一次函数解析式特点. 2.一次函数图象特征与解析式联系规律. 3.一次函数图象性质和解析式规律

教学过程:

一、一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数。当b=0时,y=kx+b即y=kx,称为正比例函数。即正比例函数是一种特殊的一次函数. 二、一次函数图象:

1、直线y=kx(k不等于0)过原点(0,0);

2、将正比例函数向上(或下)平移|b|个单位得到一次函数: y=kx+b(k≠0)三、一次函数 y=kx+b的性质:

1、k>0,b>0时函数图象过一、二、三象限,y随x的增大而增大;k>0 , b<0时,图象过二三四象限,y随x的增大而增大。

2、k<0, b>0时,图象过一二四象限,y随x的增大而减小;k<0, b<0时,图象过二三四象限,y随x的增大而减小;

⬬ 指数函数性质教案

相关内容

1、形如y =x α的函数叫做幂函数,其中x 是自变量,α是常数。 2

二、基础练习

1、判断下列哪些是幂函数

(1)y =0. 2 (2)y =x (3)y =3-x (4)y =x -1 (5)y =4x (6)y =x

2、画出下列函数的图像

(1)y =x (2)y =x

(3)y =x (5)y =

1

-6734

43

x

12

(4)y =x

13

x (6)y =x

89

3、若幂函数y =f (x )的图象经过点(9,

4、若函数f (x )既是幂函数又是反比例函数, 则这个函数是f (x )=

5、幂函数f (x

) 的图象过点(,则f (x ) 的解析式是____________

6、函数f (x ) =(m 2-m -1) x m

a

2

1

), 则f(25)的值是_________ 3

-2m -3

是幂函数,且在x ∈(0,+∞) 上是减函数,则实数m =______

7、已知-1

13

1

, y =2x , y =x 2+x , y = ( ) 2x

A 、1个 B 、2个 C 、3个 D 、4个

8

、在y =

9、已知幂函数y =

f (x ) 的图象过点(2,

A 。1 B. 2 C.10、幂函数y =x

m 2-3m -4

,则f (4)的值为( ) 2

1

D.8 2

A 。-1

2

(m ∈Z) 的图象如下图所示,则m 的值为( )

B 。0或2 C.1或3 D.0,1,2或3

x

2

5

2

x

11、若y =x , y =() , y =4x , y =x +1, y =(x -1) , y =x , y =a (a >1) 上述函数是幂函数的个数是( )

A.0个 B.1个 C.2个 D.3个

12、幂函数y =x (α是常数) 的图象( )

A、一定经过点(0,0) B.一定经过点(1,1) C.一定经过点(-1,1) D.一定经过点(1,-1) 13、对于幂函数f (x ) =x ,若0

45

α

12

x 1+x 2f (x 1) +f (x 2)

) > 22x +x 2f (x 1) +f (x 2)

) =C 。 f (1 22

A 。f (

x 1+x 2f (x 1) +f (x 2)

) ,大小关系是( ) 22x +x 2f (x 1) +f (x 2)

)

D 。 无法确 定

⬬ 指数函数性质教案

(一)对情境创设的反思

这是本节课的一个成功之处,整堂课的问题情景创设很恰当,几乎所有的结论都是在教师的引导下,学生自己总结出来的。

本节课是以问题的形式引入,采用两个实际问题,既激发了学生学习的积极性,又让他们体会到数学是来自于生活,也是服务于生活的。引出函数的一般式12y=ax ' type="#_x0000_t75">以后,我又让学生自己举几个例子,他们举的例子中有a=1,a=0,a<0的情况,我又是以提问的形式让学生自己分析相应的函数定义域与函数值,结果学生自己意识到这些情况不必研究或者不容易研究,自然的得到了参数a>0且a 12鈮? ' type="#_x0000_t75">的范围,进而让学生自己求出此时函数的定义域,此时指数函数的定义已经呼之欲出,不言自明了,甚至学生自己已经可以给指数函数下定义了。

对于指数函数的图像与性质,我仍然是创设问题情景,步步深入,层层逼近,先让学生回忆我们研究一次函数和二次函数的思路,自然会联想到用这个思路来研究指数函数;再回忆画函数图象的方法,自己动手画出函数12y=2x鐨?/m:t>:sectpr wsp:rsidr="00000000">' type="#_x0000_t75">图象,并提问:猜想函数12y=(12)x' type="#_x0000_t75"> , 12 y=3x' type="#_x0000_t75"> , 12 y=(13)x' type="#_x0000_t75">的图象,学生在猜想的过程中就会意识到指数函数的图象形状会因底数a的不同而不同:一方面,a>1与0

(二)对教学模式的反思

本节课的另一个成功之处就是采用“引导启发探讨”式教学,在授课的过程中,我一直在和学生进行探讨,让学生自己举例子,自己画图象,自己归纳概括。刚上课的时候,有位同学就对我们举的例子提出了问题,我耐心地进行了解答,正好他的问题也为下一步的讨论提供了思路,我就顺势进行了。其实在平时的课堂中,我就比较注意和学生的交流,尽量地让学生把问题暴漏出来,因为这样的问题一般就是大家共同的问题。在和学生探讨指数函数的特性时,他们观察得非常细致,几乎把图象上能反映出来的函数性质都说出来了,每位发言的同学我都给予了肯定,大家很积极,有位同学还说出了函数增长速度的问题,我就顺势讲了一个与此有关的故事,大家听得津津有味。

(三)对现代化多媒体应用的反思

本节课的第三个成功之处是:教学课件用得恰到好处,我采用的是几何画板数学软件,非常形象直观地展示了描点法作图的全过程,因为这个过程是我们归纳图像与性质的一个准备工作,应该向学生展示,但是如果在黑板上演示,既要花费大量的时间,对于较精确的计算也无法进行。几何画板正好解决了这个问题,通过演示,让学生了解到数学需要严谨科学的`计算,而且数学其实也是一种很美的科学。但是数学这门学科又要求老师要正确规范地板书,除了练习、例题的题目和作图的过程,其他重要内容我都进行了规范的板书,让学生的思维始终跟着我。在课堂中,我还用投影仪展示了个别学生的作业,进行了点评,让学生发现自己学习中的优点和缺点。

(四)对于赞赏评价的反思

对于学生创造性的回答我给予了鼓励与肯定,而对于学生不足甚至错误的回答,指出了不足,但没有损伤其自尊心和自信心。在新课标下,我们的学生应该是自由的、真实的、快乐的、幸福的。我们的数学课堂教学,应该从数学的实际出发给学生自由、真实、快乐、幸福。

(五)对不足之处的反思

在让学生归纳指数函数的图象时,学生总结了a>1与01的代表就是我们画出的12y=2x涓?/m:t>m:rpr>y=3x' type="#_x0000_t75">的图像,而0y=(13)x' type="#_x0000_t75">的图像,这样就更形象直观一些;由于上课的教室听不见铃声,时间控制得不是很准确,提前了一分钟下课,如果能利用这一分钟再稍深入地探讨一下例2中利用找中间量的方法比较两个幂的大小,这堂课就更加完满,虽然是一个很小的问题,不影响整堂课的效果,但是却提醒我自己在平时的上课中就得注意小的细节问题;板书方面,行与行的疏密控制得不够准确,导致最后一行的空间有点小了。

文章来源:https://www.hc179.com/hetongfanben/153202.html