初中数学详细教案(必备十篇)
发布时间:2020-09-03初中数学详细教案(必备十篇)。
❈ 初中数学详细教案 ❈
教学目标:
1、初步理解垂直与平行是同一平面内两直线的特殊位置关系,初步认识垂线和平行线。
2、在“演示操作验证解释应用”的过程中,发展学生的空间观念,渗透猜想、与验证的数学思想方法。
教学重点、难点:
正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象力。
教学过程:
一、平面内两直线位置关系
1、操作:
请每位同学在一张纸上画两条直线,这两条直线的位置关系会出现哪些情况?
2、分类:根据学生想象,出示下图(网格):
师:老师课前也绘制了这样6幅图,想一想,按两条直线的不同位置关系,你可以分成哪几类?说说你的分类依据。
3、讨论交流,揭示平面内两条直线的位置关系。
小结:
两条直线,除了“相交”和“不相交”,还可能存在其他的位置关系吗?
板书:
相交
两条直线的位置关系
不相交
二、探究一:垂直
1、平面内两直线相交构成的4个角的特点。
师:首先来研究平面内两条直线“相交”这一情况。
师:平面内直线a和直线b相交与点O,已知1=60,谁能马上求出2、3、4的度数?你是怎么想的?
2、平面内两直线相交的特殊情况。
提问:这4个角的度数有什么特点?固定点O,旋转后,情况还是一样吗?
(旋转至垂直)
师:现在两条直线相交成直角了。继续旋转呢?
除了相交成直角以外,其余的情况,都是任意相交的。
板书: 任意相交
相交
平面内两条直线的位置关系 相交成直角
不相交
3、练习:
下列图形中哪两条直线相交成直角。
○1 ○2 ○3
4、揭示概念。(媒体出示)
板书: 任意相交
相交
平面内两条直线的位置关系 相交成直角 垂直
不相交
5、平面图形中的垂直现象。
下面图形中哪些角是直角?在图上用直角记号标出。哪些线段互相垂直?用垂直符号表示。
○1 ○2 ○3
记作: 记作: 记作:
6、动手操作。
三、探究二:平行
1、提问:长方形中,如果把相对的两条边无限延长,是否会在某一点相交?
2、揭示概念
板书: 任意相交
相交
平面内两条直线的位置关系 相交成直角 垂直
不相交 平行
3、平面图中的平行现象
4、练习
(1)说说下列哪些直线互相垂直?哪些互相平行?
将图2改为:
提问:e和f还平行吗?
将图2改为:
当角1等于角2时,e和f还平行吗?
(2)渗透“同一”平面观念
长方体中,这两条棱相交吗?那么他们平行吗?
板书: 任意相交
相交
同一平面内两条直线的位置关系 相交成直角 垂直
不相交 平行
四、生活中的平行与垂直
1、举例:生活中,你有没有发现“垂直与平行”的现象?
2、提问:为什么这些地方要设计成“垂直”或者“平行”?
五、课堂总结
❈ 初中数学详细教案 ❈
教学目标:
1、掌握轴对称性质;
2、会利用轴对称的.性质,作对称点,对称图形等。
教学重点:
会利用轴对称性质作对称点、对称图形等。
教学过程:
一、创设情境:
1、实践、操作:
前面我们已经学过轴对称和轴对称图形,那么它们到底具有一些什么性质呢?下面我们一起来研究。
取一张长方形的纸片,按下面步骤做一做。
将长方形纸片对折,折痕为l,
(1)在纸上画△ABC;
(2)用针尖沿△ABC各边扎几个小孔
(3)将纸展开,连续AA’、BB’、CC’
2、讨论、探究:
线段AA’、BB’、CC’与折痕l有什么关系?
二、新课讲解:
1、交流、总结:
(1)垂直于线段并且平分线段的直线叫做线段的垂直平分线。
(2)如果两个图形关于某条直线成轴对称,那么对称轴是对应点边线的垂直平分线。
(3)关于某条直线成轴对称的两个图形是全等形;
2、动手、操作
(1)打出下列成轴对称的两个图形的对应点、并用测量的方法难对应点的边线被对称轴垂直平分;
(2)说出图中相等的线段和角。
线段:AD=EF BC=FG
AD=EH CD=GH
角: ∠A=∠C ∠B=∠F
∠C=∠G ∠D=∠H
3、操作、实践:
(1)按下列要求,作点A关于直线l的对称点A’ l
①过点A作AB⊥l,垂点头为点B;
②延长AB至A’,使A’B=AB。
如图,点A’就是点A关于直线l的对称点。
(2)请你作出下图中线段AB关于直线l的对称线段A’B’。
(说明:作对称线段其实就是作两个对称点就行了)
(3)已知点P和点P’关于一条直线对称,请你画出这条对称轴。
4、心得交流
讨论交流上述各图形作法要领、注意点,并口述画法基本步骤。
三、课堂练习:
1、画出下列图形对称轴,找出对称点。
2、下图是两个关于某条直线成轴对称的图形,请你画出它们的对称轴。
四、本节课的收获。
(1)我能找到轴对称中的对称点;
(2)会画出对称点、对称线段;
(3)能找到对称轴
五、作业 :P12 1-3
❈ 初中数学详细教案 ❈
教学目标:
知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。
过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。
情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。
教学重点:用计算器进行数的加、减、乘、除、乘方的运算。
教学难点:能用计算器进行数的乘方的运算。
教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难 点。
教学方法:师生互动法。
课时安排:1课时。
教具:Powerpoint幻灯片、科学计算器。
环节 教 师 活 动 学 生 活 动 设 计 意 图
创设情境 一、从问题情境入手,揭示课题。
(出示幻灯一)
在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的计算方法吗
教师对学生的回答给予点评,并带着问题引入本节课题:
板书:3.4 用计算器进行数的计算 在教师的引导下,学生仔细观察、思考,积极回答。 通过师生的相互探讨,使学生认识到学会使用计算器的.必要性,并激发学生的 求知欲。
探究活动一 一、 介绍计算器的使用方法。
(出示幻灯二)
B型计算器的面板示意图如下:
教师结合示意图介绍按键的使用方法。
学生根据教师的介绍,使用计算器进行实际操作。 通过训练,使学生掌握计算器 的按键操作,熟悉计算器的程序设计模式。
探究活动二 二、用计算器进行加、减、乘、除、乘方运算
(出示幻灯三)
例1 用计算器求下列各式的值
(1)(-3.75)+(-22.5)
(2)51.7(-7.2)
解:(1)
(-3.75)+(-22.5)=-26.25
学生相互交流,并用计算器进行实际操作。 通过计算,使学生熟悉计算器的用法。
探究活动二 (2)
51.7(-7.2)=-372.24
学生相互交流,并用计算器进行实际操作。
通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。
探究活动二 例2 用计算器计算(精确到0.001)
(-0.45)5
(-0.45)5-0.018
相互讨论,并进行实际操作。 通过计算,使学生会用计算器进行有理数的乘方运算。
探究活动二
例3 用计算器求值
(1)(-6)2(2)-62
解:
思考:
注意观察它们的按键顺序有什么不同?
学生认真观察、讨论,得出结论。
通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。
探究活动三 三、随堂练习
(出示幻灯四)
用计算器求值
1.9.23+10.2
2 . (-2.35)(-0.46)
3.( -3.45)3
4.-2.082
学生独立操作完成。 通过训练,使学生能熟练地用计算器进行数的运算。
探究活动四 四、实际应用,能力提高。
1.用计算器解决“创设情境”中提出的问题。
(出示幻灯五)
2.张老师在银行贷月息为0.456%的住房 贷款50 000元,满5年时共需付款50 000(1+600.456%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元? 在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。 通过实际应用,进一步提高学生运用计算器解决实际问题的能力。
学习总结 五、学习总结
这节课你有哪些收获?有什么体会?
教师简要点评:
(1)由于受计算器显示数位的限制,计算结果是一个近似数。
(2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的形式来显示。
学生相互交流自己的 收获和体会,教师参与互动并给予鼓励 性的评价。 学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
课堂反馈
1.用计算器进行计算(略)
2.(1)用计算器计算下列各式:
1111,111111,1 1111 111,11 11111 111 。
(2)根据 (1)的计算结果,你发现了什么规律?
(3)如果不用计算器,你能直接写出1 111 1111 111 1 11的结果吗? 让学生熟练运用计算器进行操作,学以致用。 及时反馈,并使学生能运用计算器探究一些有趣的数学规律。
附:板书设计:
3.4用计算器进行数的计算
1.介绍计算器的使用方法;
2.运用计算器进行数的运算;
3.运用计算器探究数学规律。
教学反思:
1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。
2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。
3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的 依赖于学习者的主观能动性,教学成本也大幅度提高。
❈ 初中数学详细教案 ❈
教学目标
1掌握方程的定义及方程与方程的区别;
2使学生掌握方程解的定义,以及一个值是否为指定方程的解
教学重点
检验方程的解的方法
教学难点
区分等式与方程;等式与恒等式;恒等式与方程
版面设计
方程与方程的解
一、等式与恒等式:
二、方程与整式方程:
三、方程的解与方程的根:
例1:例2:
教学设计
一、复习引入:
⑴猜年龄:
把你的年龄乘以2减去5。如果是21岁,我猜你的年龄是13岁
⑵找规律:
如果设小明的年龄为x岁那么“乘以2再减去5”就是2x5所以得到方程(equation):2x5=21
二、新课传授:
1.等式与恒等式:
①等式:
像1+2=35.3(1.2)=6.5x+2x=3xx+3=5等这样用等号“=”来表示相等关系的式子叫做等式
等式左边的式子叫做等式的左边;
等式右边的公式称为等式右边。
等式的一般形式是:a=b
②恒等式:
像1+2=35.3(1.2)=6.5x+2x=3xa+b=b+a等这样等号两边的值永远相等的式子叫做恒等式
2.方程与整式方程:
①方程:
这种含有未知数的等式叫做方程
②整式方程:
当一个方程的两边都是整数时,它们被称为积分方程
【练习】:课后1、2两题(指定学生口答)
1.方程的解与方程的根:
①方程的解:
使方程左右两边的值相等的未知数的值称为方程的解;
②一元方程:
只有一个未知数的方程式称为单变量方程式;
一元方程的解也叫做方程的根
2.一元一次方程:
只有一个未知数且未知数的最高阶为1的积分方程称为一元线性方程
例1测试下列数字是否为方程7x+1=10-2x的解:
⑴x=1;⑵x=-2
解:(1)将x=1代入方程的左右两侧,可以得到
左边=7×1+1=8
右边=10-2×1=8
∵左边=右边
νx=1是方程7x+1=10-2x的解
(2) 将x=-2代入方程的左右两侧
左=7×(-2)+1=-13
右=10-2×(-2)=14
∵左边≠右边
νx=-2不是方程7x+1=10-2x的解
例2判断下列方程是否为一元线性方程组:
⑴5x+4=11;⑵;⑶2x-y=1;
⑷;(5) 解:(1)和(4)是一元线性方程组;(2)它们不是一元线性方程组
[练习]课后练习1、3(口头回答);2(1、2)(指定学生板演)
三、作业:
课后习题
同步练习
教学目标
1知识和技能:理解命题、公理和定理的含义;理解证明的必要性.
2过程与方法:结合实例,让学生认识到证明的必要性,培养学生合理有序表达思想的良好意识
情感、态度与价值观:公理化方法对数学和人类文明发展的价值
重点与难点
1重点:知道什么是公理,什么是定理
2.难点:理解证明的必要性.
教学过程
一、复习引入
教师讲解:前一节课我们讲过要证明一个命题是假命题只要举出一个反例就行了.这节课我们将**怎样证明一个命题是真命题.
二、**新知
(一)公理教师讲解:.
我们已经知道,以下主张是正确的:
当一条直线切两条平行线时,得到相同的位置角;
第三条直线是两条直线。如果相同位置角相等,则两条直线平行;
同余三角形对应的边和角相等
在这本书中,我们把这些真实生活的问题作为公理
(2) 定理教师通过反例引导学生说明下面两个问题总结的结论是错误的,从而说明证明的重要性
1、教师讲解:请大家看下面的例子:
当n=1时(n25n+5)2=1;
当n=2时(n25n+5)2=1;
当n=3时(n25n+5)2=1.
我们能不能就此下这样的结论:对于任意的正整数(n25n+5)2的值都是1呢
实际上我们的猜测是错误的因为当n=5时(n25n+5)2=25.
2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时a2>b2.这个命题是真命题
[答:不正确,因为3>5但32<5(5)2]
教师总结:在前面的学习过程中我们用观察、验证、归纳、类比等方法发现了很多几何图形的性质.但由前面两题我们又知道这些方法得到的结论有时不具有一般性.
换言之,这些方法得到的命题可能是真是假
教师讲解:.
(三)例题与证明
例如有了“三角形的内角和等于180”这条定理后我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.
教师板书证明过程.
老师解释:这个命题可以作为判断其他命题是真是假的依据
定理的作用不仅在于揭示客观事物的本质属性,而且可以作为其他命题真伪的依据
三、随堂练习
课本p66练习第1、2题.
四、课时总结
1在长期实践中是正确的命题叫做公理
2通过逻辑推理证明它们是正确的命题称为定理
五、布置作业
❈ 初中数学详细教案 ❈
湖北省咸宁市咸安区实验中学 章福枝
一、内容与内容解析(一)内容
一元一次不等式组的概念及解法
(二)内容解析
上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键.教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念.学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念.求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验. 基于以上的分析,本节课的教学重点:一元一次不等式组的解法.
二、目标及目标解析(一)目标
(1)理解一元一次不等式组、一元一次不等式组的解集等概念.(2)会解一元一次不等式组,并会用数轴确定解集.(二)目标解析
达到目标(1)的标志是:学生能说出一元一次不等式组的特征.
达到目标(2)的标志是:学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.
三、教学问题诊断分析 通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻. 本节课的教学难点:在数轴上找公共部分,确定不等式组的解集.
四、教学过程设计
(一)提出问题 形成概念
问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么? 设问(1):依据题意,你能得出几个不等关系? 设问(2):设抽完污水所用的时间还是范围?
小组讨论,交流意见,再独立设未知数,列出所用的不等关系. 教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示? 学生自学概念,说出表示方法.教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围? 学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围. 教师追问(3):怎样解不等式,并用数轴表示解集? 学生独立完成. 教师追问(4):通过数轴,怎样得出不等式组的解集? 学生独立完成,老师点评 教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组? 学生自学概念.
设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力.并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的意义.
(二)解法探讨 步骤归纳 例1 解下列不等式组
学生尝试独立解不等式组,老师强调规范格式
设问1:当两个不等式的解集没有公共部分,表示什么意思? 设问2:解一元一次不等式组的一般步骤是什么?
学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:(1)求每个不等式的解集;(2)利用数轴找出各个不等式的解集的公共部分;(3)写出不等式组的解集.
设计意图:初步感受解一元一次不等式组的方法和步骤.
(三)应用提高 深化认知
例2 x取那些整数值时,不等式5x+2>3(x-1)与
都成立?
设问1:不等式都成立表示什么意思? 小组讨论
设问2:要求x取哪些整数值,要先解决什么问题? 学生先合作交流,再独立解不等式组 设问3.怎样取值?
学生在不等式组的解集范围内,取整数值.老师强调即求不等式组的特殊解. 设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练.
(四)归纳总结 反思提高
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)什么是一元一次不等式组?什么是一元一次不等式组的解集?(2)解一元一次不等式组的一般步骤?
(3)一元一次不等式组解集的一般规律是什么?
设计意图:通过问题归纳总结本节课所学的主要内容.
(五)布置作业 课外反馈 教科书习题9.3第1,2,3题
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
❈ 初中数学详细教案 ❈
教学目标:
1.知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2.能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3.情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:
理解对称图形的概念,能正确找、画对称轴。
教学难点:
准确找对称轴。
教学具准备:
1.教具:图片、剪刀、彩纸、课件
2.学具:蝴蝶几何图片、剪刀、白纸
教学过程:
一 创设情境、激趣感知
课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?
蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀? ”
蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”
蜻蜓说:“我才不信呢!”
师:你们想知道对称图形的那些知识?
生1:什么样的图形是对称图形?
生2 :对称图形有什么特点?
[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。]
二 师生互动、探究新知
(一)教学对称图形
现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?
生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
……
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念: 教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。当学生分出对称与不对称的两类图形后,再次引导观察发现。使学生在探索中学习新知,亲历探索过程。]
小结:同学们观察得真仔细,图形左右两边的形状完全相同的,我们就说这些图形是对称图形。(板书:对称图形)
(二)说一说、找一找
1.生活中哪些东西是对称的,哪些不是对称的?
2.请你归归类。
小组讨论:哪些是对称的,哪些不是对称的,为什么?
3.小组反馈交流。
[设计理念:让学生在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,
同时让学生感受到生活中到处都有对称,到处都有对称的事物。]
(三)教学轴对称
1.出示剪纸作品,如下图:
师:是轴对称图形吗?
生:是的
师:剪纸有对称轴,你能把它画出来吗?说说画对称轴时要注意什么?
2.向学生提出任务:“你可以剪出一个对称的图形吗?”
①请学生动手剪纸花,在小组内交流剪法。
②让学生试剪课本第68页的上衣图,并让学生说说怎样剪,剪出来的图形才对称?
生:我是先把纸对折,在右上角处用笔画出小半圆,左下角画出小长方形,然后照着画的线剪,剪好后把对折的纸打开形成上衣对称图形。
3.请学生画出京剧脸谱的对称轴
❈ 初中数学详细教案 ❈
一、教材的地位与作用
《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。
二、教学目标
(一)知识与技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
(二)数学思考:
体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
(三)问题解决:
初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。
(四)情感态度:
培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
三、教学重点与难点
教学重点:二元一次方程及其解的概念。
教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
四、教法与学法分析
教法:情境教学法、比较教学法、阅读教学法。
学法:阅读、比较、探究的学习方式。
五、教学过程
1.创设情境,引入新课
从学生熟悉的姚明受伤事件引入。
师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?
(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?
设姚明投进了x个两分球,罚进了y个球,可列出方程。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?
设易建联投进了x个两分球,y个三分球,可列出方程。
师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?
从而揭示课题。
(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)
2.探索交流,汲取新知
概念思辨,归纳二元一次方程的特征
师:那到底什么叫二元一次方程?(学生思考后回答)
师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)
师:根据概念,你觉得二元一次方程应具备哪几个特征?
活动:你自己构造一个二元一次方程。
快速判断:下列式子中哪些是二元一次方程?
①x2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)
二元一次方程解的概念
师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?
师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)
二元一次方程解的不唯一性
对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?
(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
(1)当x=2时,求所对应的y的值;
(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;
(3)用含x的代数式表示y;
(4)用含y的代数式表示x;
(5)当x=负2,0时,所对应的y的值是多少?
(6)写出方程3x+2y=10的三个解.
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的`难点。)
大显身手:
课内练习第2题
梳理知识,课堂升华
本节课你有收获吗?能和大家说说你的感想吗?3.作业布置
必做题:书本作业题1、2、3、4。
选做题:书本作业题5、6。
设计说明
本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。
在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,
此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。
❈ 初中数学详细教案 ❈
一、说教材
(一)本节教材所处的地位和作用:
“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。
(二)教材内容的选择
这节课所选用的教学内容是:6.1.2平面直角坐标系(第二课时)。
(三)教学目标的确定
知识目标:能根据坐标(都为整数)描出点的位置,能在方格纸中建立平面直角坐标系,描述事物的位置。
能力目标:通过多不同象限的点的坐标的符号的研究,培养归纳、概括能力。
思想目标:在教学中渗透分类的思想,初步体会数形结合的思想。
教学难点:总结各象限点及坐标轴的坐标的符号。
(四)教学重点、难点的确定
我认为本节课的教学重点是根据点的坐标在直角坐标系中描出点的位置,这是因为:
1.九年义务教育全日制初级中学数学教学大纲中明确规定要求学生掌握平面直角坐标系,能够使它成为有关论证思维工具。
2.学习知识的目的在于应用,而平面直角坐标系应用相当广泛,它是代数、几何学里最基本,最重要的解题的工具之一。
教学难点:总结各象限点及坐标轴的坐标的符号。是通过学生的探究实现的,用这种方法可以使学生更好的理解、记忆。
二、说教法
根据本节课的内容和学生的实际水平,我采用的是讲练结合的方法。
因为本节课的知识点之一是“象限”,这就需要教师的精讲。教师要引导学生去理解心知,并配合相关的练习,引导学生系统地掌握基础知识和基本技能,培养学生分析问题及解决问题的能力。
三、说学法
通过这节课的教学使学生“会质疑,会尝试”学生有得必先有疑,只有产生疑问学习才有动力。学生通过动手、动脑、动口,通过观察、分析、归纳得出结论,这样使学生感知知识的产生和发展过程,从而使学生达到理解消化的目的。教师不但要让学生学会、更应让他们会学。所以,在教学中我设计了两个探究问题,让他们自己探究,归纳。从而培养学生发现问题、分析问题、解决问题的能力。
四、说课堂程序
(一)以旧带新:
利用上一节课对平面直角坐标系的初步认识,设计了一道口答题,(看图说出各点的坐标)设计意图是复习有关旧知识,可帮助学生理解新知,从而引出新课。
(二)教学新知
1.象限的概念
以教师讲解的方式介绍四个象限的概念。
(设计意图:象限这种概念的教学还是以教师的`讲解为宜。)
2.各象限点的坐标的符号情况由学生探究。
具体安排是由例题、练习题作为铺垫进行探究,设计意图是通过学生自己的探究,已有利于对四个象限概念的理解,有有利于对点的坐标的理解。
3,同一图形在不同直角坐标系的坐标不同。也是由学生进行探究,具体由三步组成,一是找坐标轴,二是写坐标,三是从新建立坐标系并写出坐标,由浅入深的进行探究,符合学生认知水平的发展。
4、练习:一部分出现在新课几探究后,一部分出现在新课后,题是平面直角坐标系的变式练习,可考察思维的灵活性和全面性。又体现了平面直角坐标系的实用价值,突出考察思维的全面性和深刻性。
练习的要有一定的梯度,首先,基础型的题,找一名基础稍差的学生来说,增强其信心,其次,作图题,由于题的不是难点,由全体学生笔练完成,不必探究。
(三)总结归纳
本节课的小结,由教师进行小结,一方面可以小结新知,另一方面小结平面直角坐标系的重要性及广泛用途。
(四)作业
A组B组两种领型,分两种层次,即利于面向全体,又利于分类推进。
板书:
6.1.2平面直角坐标系
❈ 初中数学详细教案 ❈
一 、教学目标
(一)基础知识目标:
1。理解方程的概念,掌握如何判断方程。
2。理解用字母表示数的好处。
(二)能力目标
体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标
增强用数学的意识,激发学习数学的热情。
二、教学重点
知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点
如何找相等关系列方程
四、教学过程
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于
任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的.方法和步骤。
师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例1 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库 原来有多少面粉?
师生共同分析:
1。本题中给出的已知量和未知量各是什么?
2。已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)
若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x—15%x=42 500,
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程。即所列的方程应满足两边的量要相等;
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果
分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一
小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x—(5—4),
解这个方程: 2x=10,
所以 x=5。
其苹果数为 3× 5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得 )
课堂练习:
1。买4本练习本与3支铅笔一共用了1。24元,已知铅笔每支0。12元,问 练习本每本多少元?
2某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数。
五、课堂小结
首先,让学生回答如下问题:
1。本节课学习了哪些内容?
2。列一元一次方程方法和步骤是什么?
3。在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;
布列方程)
(2)以上步骤同学应在理解的基础上记忆。
六、作业布置
1。买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2。用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
❈ 初中数学详细教案 ❈
学习目标:
1、经历角的折叠过程探索角的对称性,并发现角平分线的性质和判定点在一个角的平分线上的方法;
2、会运用角平分线的性质定理解决生活中的相关问题;
3、在“操作—探究—归纳—说理”的过程中学会有条理地思考和表达,提高演绎推理能力。
重点、难点:运用角平分线的性质定理解决生活中的相关问题
学习过程
一.【预学提纲】初步感知、激发兴趣
1、在一张薄纸上任意画一个角(∠AOB ),折纸,使两边OA、OB重合,你发现折痕与∠AOB有什么关系?
2、在∠AOB的内部任意取折痕上的一点P,分别画点P到OA和OB的垂线段PC和PD,再沿原折痕重新折叠,由此你能发现角平分线上的点有什么性质?
二.【预学练习】初步运用、生成问题
1、角是轴对称图形吗?若是,对称轴是什么?
2、下列图形中,不是轴对称图形的是 ( )
A. 两条相交直线 B. 线段
C.有公共端点的两条相等线段 D.有公共端点的两条不相等线段
三.【新知探究】师生互动、揭示通法
问题 1:你知道角平分线有什么性质吗?由【预习指导】2,你得到什么结论?
1、(1)画∠AOB,折纸使OA、OB重合,折痕与∠AOB有什么关系
(2)在折痕上任取一点P,作PD⊥OA,PE⊥OB,垂足为D、E,那么PD与
PE有什么关系?
结论: 。
2、在上面第二个结论中,有两个条件(1)OC是∠AOB的平分线; (2)点P在OC上,PD⊥OA,PE⊥OB,才能得出PD=PE,两者缺一不可.下图中PD=PE吗?各缺少了什么条件?
问题 2:讨论:点P在∠AOB的平分线上,那么点P到OA、OB的
距离相等;反过来,你能得到什么猜想?
得出结论:
验证:课本P20讨论;
小试牛刀:
问题 3:任意画∠O,在∠O的两边上分别截取
OA、OB,使OA=OB,过点A画OA的垂线,过点
B画OB的垂线,设两条垂线相交于点P(如图),
点O在∠APB的平分线上吗?为什么?
解:点O ∠APB的平分线上。
因为 ,且 ,]
即点O到的两边的距离 ,所以点O
∠APB的平分线上。
理由是:
四. 【解疑助学】生生互动、突出重点
1、画一画:已知∠AOB和C、D两点,请在图中
标出一点E,使得点E到OA、OB的距离相等,
而且E点到C、D的距离也相等。
1、如图,直线a,b,c表示三条相互交叉的
公路,现要建一货物中转站,要求它到三条公路
的距离相等,可供选择的地址有几处?如何选?
五.【变式拓展】能力提升、突破难点
1、如图,OP是∠AOB的平分线,C是OP上一点,
CE⊥OA于点E,CF⊥OB于点F,CE=6?,
CF= ?,理由是 。
2、如图,AD平分BAC,∠C=90°,DE⊥AB,那么
(1)DE和DC相等吗?为什么?(2)AE和AC相等吗?为什么?
六.【回扣目标】学有所成、悟出方法
角的对称轴是什么?角平分线有什么性质。
-
我们精彩推荐初中数学详细教案专题,静候访问专题:初中数学详细教案