关于三角形的日记|关于三角形的日记(通用14篇)
发布时间:2024-07-30关于三角形的日记(通用14篇)。
关于三角形的日记 【一】
一.说教材
全等三角形是八年级上册数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,也是进一步学习其它图形的基础之一。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:
(一)、教学目标:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,培养学生热爱科学、勇于创新的精神和多方位审视问题的能力与技巧。
(二)、说教学重点、难点
重点:全等三角形的概念、性质
难点:找对应顶点、对应边和对应角
二、说教法
1、引导发现法
在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。
2、谈话法
在师生对话、问答的过程中,用谈话的方式引导学生积极思考、探索,从而使学生在师生之间的交流、同学之间的交流中获得知识。
三、说学法
1、通过接触身边环境中的数学信息,激发学生的学习兴趣,产生自觉学习的内在动机,引导学生踏上自主学习之路。
2、看听结合,形成表象。
3、手脑结合,自主探究。
四、教学流程设计
1、情景导入
课前展示背景为悉尼歌剧院的倒影的图片(目的引起学生们的兴趣:全等三角形和歌剧院有什么联系?)
展示我国某地一幅风景图片,通过学生对湖光山色的描绘(描绘的倒影是景致之一),使学生的思维很快处于兴奋状态,这样,引导学生积极思维,让学生们认识到全等图形就在我们身边,以利于培养学生的探索性思维能力,激发学生的求知欲。
2、探求新知
展示国旗和福娃的等图片,提出问题(同时使学生感知,我们的祖国在体育、经济等诸多方面都已跻身与世界强国之列,为自己是一个中国人而感到自豪、骄傲)
3、通过观察图形变换让学生感受完全重合的图形有很多,从而得出全等形的概念。
4、通过演示让学生体会出全等三角形的概念和对应顶点、对应边、对应角的概念以及全等三角形的性质,并以图形变换的形式在练习指出对应顶点、对应边、对应角,由此去理解“对应顶点写在对应的位置上”的含义。
5、通过学生对全等三角形的观察,合作交流,从而得出找全等三角形的对应边、对应角的方法。
6、小结提高
通过今天的学习,同学们有哪些收获?(由学生自我完成知识的体系,纳入已有的知识体系,逐步形成解决问题的技能和思想)
7、拓展与延伸(合作交流完成探究题)
8、板书设计
13.1全等三角形
1、全等三角形的概念
2、△abc≌△def
3、对应顶点、对应边.、对应角
4、全等三角形的性质
5、找对应元素的方法
20xx年10月18日
关于三角形的日记 【二】
尊敬的领导、老师们:你们好
今天我说课的题目是北师大版数学七年级下册第四章第3节《探索三角形全等的条件》第3课时。下面,我将从教材分析、教学方法及教学过程等几个方面对本课的设计进行说明。
一、教材分析(一)本节内容在教材中的地位与作用。
《探索三角形全等的条件》对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的。本节课中的内容是《探索三角形全等的条件》中的最后一个判定,在学习新知识中我们复习前面所学的SSS,ASA,AAS,也为后面的尺规作图打好基础。另外也对后面的三角形的相似等知识学习提供了保障。本节课的知识具有承上启下的作用。
(二)教学目标
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)知识目标:经历用两角一边进行画图和验证三角形是否全等的过程中,探索出全等三角形的条件“边角边”,并能应用它们来判定两个三角形是否全等。还对两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等进行探索。
(2)能力目标:在探索三角形全等条件的过程中,让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力。有关数学题的答题规范化的培养。
(3)情感目标:培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。
(三)教材重难点
学情分析:
学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,几何证明题的推理证明的书写对学生来说难度较大,同时,我们知道,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点。
鉴于以上学情分析,我把本节课的重难点设置为:本节课的重点是掌握三角形全等的条件“SAS”,并能应用它们来判定两个三角形是否全等。探索“两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等”是难点。我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;
学具:剪刀、纸片、圆规、直尺。
二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。并且用导学案的形式让学生对本节课内容很好的把握。
三、教学过程(一)温故知新
1.我们在前面学过____________________方法判定两个三角形全等。
(二)设疑引题,激发求知欲望
首先,我出示一个实际问题:
问题:小颖作业本上画的三角形被墨迹污染,她想画出一个与原来完全一样的三角形,她该怎么办呢?你能帮帮小颖吗?
这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(三)引导活动“想一想”,揭示知识产生过程
数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。探索三角形全等条件重要学生的探索能力的培养。
活动一:让学生通过复习回顾已学过的判断两个三角形全等的方法引出本节课所要探究的两边一角能不能判断两个三角形全等。
活动二:让学生首先通过画图对两边及其夹角对应相等的情况进行对比来判断所画的两个三角形是否全等。特别的小组用叠合的方法来进行判断三角形全等,由此得到判定两个三角形全等的方法4(两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”)。
活动三:在学生画出有两边及其一边的对角对应相等的两个三角形的图上,让学生观察,看画出的三角形是否一定全等。由此得出结论,这样的两个三角形不一定全等。老师引导学生得出结论,并揭开秘密,针对此结论用一个生活中的例子来进行巩固。联系实际:请同学们观察下面图形中三角形全等吗?由于此图来自本城市的重要工程,所以学生很快能理解两边分别相等且其中一组等边的对角分别相等的两个三角形不一定全等的结论。并说明数学在实际生活中是存在的,并可以应用数学解答实际问题。
(四)练一练,用了三个例子来巩固“边角边”的应用。由老师引导--学生解决—学生点评—教师点评的流程讲解练习。让学生知道一般的我们写三角形的有关题时,对应顶点应写在对应的位置上,并且要知道每一步的理由,但不一定要写出理由来。链接中考要求对学生的答题规范化能获取高分。比如在第三个题中:3.在△ABC中,AB=AC,AD是∠BAC的角平分线。那么BD与CD相等吗?为什么?回答相等,然后再说明理由。这样才规范。还有公共边的写法,第一题中就写成“AC=CA”而第三题的公共边应写成AD=AD.中考答题规范化应该从七年级抓起。
(五)作业布置:完成学案剩下的题。
(六)课堂小结
(1)本节课你学了什么?
(七)老师的赠言。每一节课都送给学生一句有关学习的警句,促进学生对学习兴趣培养,让他们从“你要学”转化为“我想学”。
附:
复习:SSS,ASA,AAS
结论:两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”.
关于三角形的日记 【三】
教学目标:
1、使学生联系已有知识和经验,通过观察、操作、测量等具体活动,认识三角形的基本特征,初步形成三角形的概念;知道三角形的高与底的含义,会用三角尺画三角形的高(限在三角形内)。
2、使学生经历探索和发现三角形基本特征的过程,积累一些观察和操作、比较和分析、抽象和概括等活动经验,体验数学抽象到一般的过程,发展空间观念。
3、使学生在参与数学活动的过程中,获得一些学习成功的体验,进一步激发数学学习的兴趣,树立学好数学的信心。
教学重点:认识三角形的特征,知道三角形高与底的含义,会用三角尺画三角形的高。
教学难点:三角形高的画法。
教具:三角尺 小棒 直尺 七巧板 课件
教学过程:
一、导入
同学们,请观察这张图片,你能从图片里找到三角形吗?
对,在这里。
想一想,你在生活中的哪些地方还见到过三角形?
指名说说。
今天我们就一起来认识一下三角形。
(板书:三角形的认识)
二、探究
1、同学们,请拿出你的小棒,在桌面上摆出一个三角形。
我们将三根小棒首尾相接,就围成了一个三角形。
2、请在纸上画一个三角形,不要画的太小哦。
请你到前面来,在黑板上画一个三角形。
同学们,我们像刚才一样,将三条线段首尾相接围成的图形就是一个三角形。(课件)
齐读一遍,注意要重读红色字体。
3、下面老师要看看谁的眼睛最亮,(课件)
认真观察,下面哪一幅图是三角形?为什么?
(第3是三角形,因为只有它是由三条线段首尾相接围成的,其他都不是。) 说的真好,三条线段必须要首尾相接,才能围成三角形。
围成三角形的三条线段叫做三角形的边,线段的端点叫做三角形的顶点,每两条边之间的夹角叫做三角形的角。
请大家在自己刚才画好的三角形上标出三角形的边,顶点和角。
同桌探究交流,你找出了几条边,几个顶点,几个角?
完成的同学用端正的坐姿告诉老师。
请你到前面来,在老师三角形上标出所有的边、角和顶点。
给大家说说,你的想法。
(三角形有三条边,三个顶点,三个角。)
孩子你真棒,谢谢你,请回座位。
5、大家请看,方格纸上有4个点,从这4个点中任选3个作为顶点,都能画一个三角形吗?你有什么发现?哪三个点可以,哪三个点不可以,为什么? 请在答题纸上第2题中画一画,和同桌互相说一说你的发现。
有小组已经完成了,请你给大家说说你们小组的发现。
(B.C.D三点不可以画一个三角形,因为这三个点在一条直线上。) 所以我们发现在同一条直线上的三个点不能画一个三角形。
6、同学们,请看这幅图,你知道图中画的是什么吗?这是一个人字梁,是建造房屋时房顶的结构,你能量出图中人字梁的高度吗?你量的是哪条线段?它和底边有什么样的位置关系?
请看答题纸上第3题,想一想,量一量,同桌交流你的发现。
指名回答。
(量的是中间最高的那条线段,它和底边互相垂直。)
7、如果我们把人字梁所表示的三角形画下来,就可以这样表示出它的高和底。(课件出示三角形的高和底)
从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的
底。齐读这句话,注意重读红色字体。
怎样利用工具规范的画出三角形的一条高呢,请看屏幕演示。(课件)看清楚了吗?
老师在黑板上再演示一遍,拿出三角尺,让三角尺的一条直角边和三角形的边重合,慢慢向顶点移动,移动到顶点时,画出顶点到对边的垂直线段,要画成虚线,标出垂足,写上高和底。(板书)学会了吗?
请大家在自己刚才画的三角形中,画出一条高。
师巡视,指导画法 。同学们画的高真好,那么大家猜一猜,一个三角形有几条高?
(三角形有三个顶点,每个顶点都可以向对边画一条高,所以三角形有3条高。)
是这样吗?我们一起来验证一下。
8、接下来我们来做一个练习,请量出下面每个三角形的底和高各是多少,记录下来,注意测量时取整厘米。
指名说,注意说法的规范:第一个三角形底是3厘米,高是2厘米。
三、巩固
同学们,下老师想请大家参加一个闯关游戏,看看大家对本节课的知识掌握的到底好不好,大家想参加吗?有信心顺利通关吗?
第一关,(课件)画出每个三角形底边上的高。
完成答题纸第5题,可以同桌边交流边画。
完成的小组把笔放下身体坐正。
指名板演,评讲。画第三个三角形的高时,你有什么发现?
(画出的高跟三角形的一条边重合了)
这个三角形有一个角是直角,它叫直角三角形,我们的三角尺是不是直角三角形?(是),举起你的三角尺,指一指哪个角是直角,组成直角的两条边是它的直角边,如果用它的一条直角边作底,另一条直角边就是三角形的高,如果用另一条作底,这条就是三角形的高,那如果用这条边作底呢?两条直角边还可以作三角形的高吗?不可以,这时高需要画出来。
第二关,请在方格纸上画一个底5厘米、高3厘米的三角形,完成答题纸
第6题。指名板演。
同学们请看,这些三角形都是底5厘米高3厘米,,同桌交流一下,你发现了什么? (底和高都相等的三角形,形状不一定相同。)
第三关,请看要求。
用七巧板拼三角形。四人为一个小组,合作探究,
(1)选两块拼一个三角形。请拼好的同学到前面来给大家展示一下。
(2)用三块拼一个三角形。请拼好的同学到前面来给大家展示一下。
(3)你还能用几块拼一个三角形?到前面展示。(4块、5块、7块) 同学们,闯关成功,你们太棒了!
四、小结
同学们,今天你学了会关于三角形的哪些知识呢?
学生回答。
关于三角形的日记 【四】
今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)
(2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。
回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比2
对应高之比0.5
周长之比3 k
面积之比100
2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答:最大值,最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
关于三角形的日记 【五】
探究三角形这堂课其实就是重点解决三角形按角分类三种三角形的认知和探究。在实行教学方法时,我实践探索运用了HANDSON的形式。借鉴杜威“做中学”的思想,我在设计课程方案时,让学生充分动起来,让学生在质疑,探究,实践操作,问题解决等过程中。经历分一分,猜一猜,画一画活动,学生在自主活动中得以发展。
在此我来说说我的备课设想
(一)问题——在生活中生成
在杜威“做中学”理论中有这么一句话:“经验和自然相互联系”,从而可知做中学强调从学生已有的生活经验出发,要求创设生活情景,使生活问题(材料)数学化,数学问题生活化,以唤起学生已有的生活积沉,产生对数学的亲切感,从而激发学习数学的兴趣。这也就是我这堂课的引入——激趣。
课一开始我创设了情境,使数学问题生活化,与学生的现实生活联系起来,这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,自己从而促使学生后面的发现问题,提出问题,和解决问题。
(二)问题——在探究中解决
提出一个问题往往比解决一个问题更为重要。因为问题是探究的起点,科学的发现始于问题,学生自行探究知识就应该从问题开始。因此,在“做中学”的过程中,我鼓励学生大胆地表达自己的观点,更重要的是把培养学生发现问题,解决问题的能力作为首要问题来探索,鼓励他们去想,去说,去做。
这堂课我就在探究问题中设计了四个环节
1.表1让学生自主提出想要探究的问题——问题产生
2.表2学生合作辨别三角形三个角的情况——初步探究
3.表3学生根据表2自己的发现,对三角形进行分类——感悟
4.用小棒搭三角形学生自己质疑,自己动手操作实践证明——领悟,问题解决
(三)评价——在做中体现。
新课程提出,关注学生在课堂教学中的表现应成为课堂教学评价的主要内容,包括学生在课堂上的师生互动,自主学习,同伴合作中的行为表现,参与热情,情感体验和探究,思考的过程等等,在课堂上我让学生讨论,交流,合作,思考,获得结论,最后自己给自己一个合理的评价。——也就是表一中的我的收获。
同时在这堂课的过程中,我力求让学生动起来,充分展现做中学。
学生“动”起来,课堂才能活起来。而课堂“活”起来才能展现生动活泼的教学氛围,才能显示学生的虎虎生气。要“活”必“动”,“动”了必“活”。
多感观地“动”。即嘴动,眼动,耳动,手动,脑动。
嘴动。嘴巴是表情达意的小喇叭,所有得人心思想,观念,感情都要通过它来传送。课堂上我让学生尽情地读,说,议,问。要创造让学生发问的机会,培养对问题寻根究底的精神。
耳动。学会倾听别人的发言。
眼动。学会观察,能有顺序地观察。
手动。课堂上,我们尽量让学生的手动起来,让他们主动地独立地获取知识,锻炼能力。一项研究表明:“人对知识的吸收,如果仅是听,看,加起来只能吸收5%,如果动手的话则能达到90%以上。”所以在习题中,我设计了画一画的环节,让学生分割正方形。
脑动。也就是让学生的充分思考。在猜一猜这个环节,我就让学生体会到考虑问题要全面。
以上是我的点滴感受,还望能得到在座各位专家和同行的斧政。
关于三角形的日记 【六】
一、说教材:
本课题是人教版五年级上册第五单元一课时的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。教学内容引导学生动手把两个完全一样的三角形拼成平行四边形来计算面积,培养学生的动手操作能力和思维能力。
二、说教学目标:
基于以上对教材的认识,按照新课程理念,我制定了以下的教学目标:
1、知识与技能
(1)使学生经历三角形面积计算公式的探索过程,理解三角形面积计算的公式。(说明:这里强调“过程”,即:让学生亲身经历三角形面积公式探索与获得的过程,而不是要教师直接把三角形面积计算的方法讲明给学生,让学生处于接受的状态。这样设计,符合了新课程学生的现代学习观。)
(2)通过多种学习活动,培养学生的抽象、概括和推理能力,培养学生的合作意识和探索精神。
(3)培养学生应用所学知识解决问题的能力。
2、过程与方法
使学生经历操作、观察、讨论、归纳等数学学习活动,通过图形的拼摆,渗透图形转化的数学思想,在探索学习和解决实际问题的过程中体验数学与生活的联系。
3、情感、态度与价值观
让学生在探索活动中获得积极、愉悦的情感体验,进一步培养学生学习数学的兴趣。
三、说教学重点、难点:
重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形的底、高和面积与拼合而成的平行四边形的底、高和面积之间的关系。
四、说教法学法:
“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:
1、实验法
学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。
2、课件演示,配合启发。
学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。
五、说教学过程:
(一)复习引入,揭示课题
1、请学生回忆并指名学生说明上节课同学们推导平行四边形面积计算的过程。(设计意图:要求学生完整地说明平行四边形面积公式的推导过程,锻炼学生的语言表达能力。并继续渗透转化的数学思想,即:把平行四边形转化成长方形来计算面积,为新知识的学习作好铺垫。对于表达不清楚、不完整的同学,教师显示课件,启发其完整的表达,并给予鼓励。)
2、揭示课题
板书课题:三角形的面积
(二)探索新知
出示问题:怎样把三角形的转化成我们学过的图形呢?
1、小组合作,动手拼摆,填写实验报告单。(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“形状完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)
2、小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。“我的发现”这一栏教师要鼓励学生充分、大胆地发言,说出自己在操作中的发现,教师给予鼓励。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)
3、课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生动手拼摆,再播放课件演示这一顺序必须把握好。先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)
4、小组合做,讨论问题(课件出示问题)。
问题:两个完全一样的三角形可以拼成?
每个三角形的面积等于?
这个平行四边形的底等于?
这个平行四边形的高等于?
三角形的面积公式是?
学生借助手中的图形讨论问题。
小组代表汇报讨论学习成果。
教师结合课件补充,帮助学生解决问题。(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)
(三)巩固拓展
1、课件出示两道基本题的练习。
学生独立计算,教师指名学生上黑板板演。
课件演示规范的板演过程。(设计意图:基本题的设计,巩固了学生对基本知识的掌握。)
2、课件出示两道拓展题的练习。(判断题,可以组织学生小组讨论完成。“解决问题”有一定的开放性,学生可以自由选择三角板,实际动手量出三角板的底和高,再计算面积,有利于培养学生的动手能力,有利于学生学习主体性的提到。)
(四)全课总结
同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)
六、说板书设计
三角形的面积
三角形的面积=底高÷2
字母表示:s=ah÷2
关于三角形的日记 【七】
各位评委:
今天我说课的题目是人教版数学八年级上册第十章第1节《全等三角形》。下面,我将从教材分析,教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。
一、教学地位和作用
全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。在教学中,采用的是“设疑——实验——发现——总结”的教学方法,并采用“变式练习”方法来提高学习效率。
二、教学的目标和要求:
1、知识目标:
(1)知道什么是全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角,对应边。
2、能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
三、教学重点:
1、能准确地在图形中识别出对应边,对应角;
2、全等三角形的性质和利用其基本性质进行一些简单的推理和计算。
(解决方法:利用动画的形式让学生直观的识别抽象的图形和知识点从而突出和掌握重点。)
四、教学难点:
能在全等变换中准确找到对应边,对应角。(在对应边,对应角的识别,查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点)
五、教法与学法:
采用直观,类比的方法,以多媒体为手段辅助教学,引导学生预习教材内容,养成良好的自学习惯,启发学生发现问题,思考问题,培养学生的逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。
多媒体,剪刀,直尺,硬纸,三角板
七、教学过程:
(一)复习导入方面
从复习全等图形方面入手,展示一些直观的图形,接着创设一个问题情境:如何翻新一个旧的三角形的纸样让学生动手画图,实验尝试,从而发现其实解决问题的关键是画一个全等的三角形,从而引出课题。通过以上的环节主要是提高学生数学概念的辨析能力和培养学生的动手实践能力。(此环节约用时5分钟)
(二)新课讲解方面
1、全等三角形的定义
通过动画的展示,引导学生观察,分析得出全等三角形的定义(先展示动画)。目的主要在于培养学生的观察分析能力。(此环节学生约用2分钟进行讨论分析)
2、全等三角形的性质
以动画的形式,介绍全等三角形的对应顶点,对应边,对应角,并引导学生通过观察分析全等三角形的对应边,对应角之间分别有怎样的关系,从而得出全等三角形的性质。在无形中培养了学生的图形识别能力和直观判断能力。(此环节约用时7分钟)
3、全等三角形的表示法
介绍全等符号,说明表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。(此环节用时约2分钟)
4、议一议
方法:(1)小组活动,展示部分小组的解决方案
(2)动画展示解决方案
(3)知识点的扩充:动画展示全等三角形的变换识别中对应边,对应角的查找。
以上环节主要趋于培养学生的团结合作精神,认识团队的力量和开拓学生的思维,扩充学生的知识范畴。(此环节约用时8分钟)
(三)课堂练习(此环节约用时18分钟)
用多媒体课件逐一展示练习题目,让学生一一解答。主要是通过练习让学生巩固所学的知识并学会用所学的知识进行推理和解决实际问题。
(四)课堂小结(此环节约用时2分钟)
经过以上的教学环节,为了帮助学生系统的掌握所学的知识,达到预期的效果,在这一步骤中,我准备利用提问的形式,师生共同进行小结和归纳。
(五)作业布置(约用时1分钟)
(六)板书设置
关于三角形的日记 【八】
本节课我在设计时以问题作为教学的出发点,在设计教学方案时,不是直接以感知教材为出发点,而是把教材上外角和的知识改编成需要学生探究的问题,主要的活动是由学生动手操作剪纸发现问题、总结规律,激发学生的探究兴趣,让学生在尝试中体验和创新,使传统意义上的教学过程变成学生对数学问题进行探究、解决的过程。
本章的主要内容是三角形的有关概念及其边角的性质。这节课的重点是探索并掌握三角形的.外角性质及外角和。在呈现方式上,改变“结论———例题———练习”的陈述模式,而是采用“问题———探究———发现”的研究模式,并采用多种探究方法:对“三角形外角性质及外角和”采用拼图、度量和数学说理的方法,放手让学生自己去总结发现问题。
课前让学生准备好剪刀、硬纸板、量角器、三角板等工具。
采取理论和实践相结合的方法。形式上以自主学习、合作研究为主,教师相辅引导,适时提示。
为增大课堂教学的容量和提高效率,采用多媒体辅助教学。
在一副图中找出三角形的外角、内角(相邻和不相邻)。观察图中外角和相邻内角的关系(之和等于180度。)然后提出疑问:外角和其它两个不相邻的内角又有什么关系呢?下面我们就来共同探讨一下这个问题,大家有没有信心学好呀?
对于这一部分的教学我主要是让学生在动手拼图中总结规律,然后由小组讨论完成,或者引导学生思考发现这个规律,还有其他的方法吗?(比如用量角器度量等等)。然后让一名学生到展台展示。这样比较形象直观。
探索出三角形外角的两条性质后,要针对性质再进行强调,尤其是个别关键字。教育大全
2、探究三角形外角和定理。
这一部分我先让学生动手剪纸拼图发现规律(或者用量角器度量),然后动画展示一下,这样更直观形象,最后上升到理论上进行推理,通过三角形内角和定理逐步引导学生得出外角和定理。
本节课重点就是这两部分的内容,然后练习。我在设计练习时考虑由浅入深的原则:第一个练习题是有关内角和和外角和定理的比较简单的求角的度数的问题;第二个练习是一道综合运用题,在做这个题目是我考虑到锻炼学生、培养学生能力这一点,我让一名学生到黑板上做然后把自己的思路讲给同学们。教育大全
回想一下我们这节课主要学习了哪些知识?可以是学习内容,也可以是学习态度上的等等,找几位同学谈谈。
总之,我这堂课改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。改变课程内容“难繁偏旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力,合作的能力。
力争为争取新课程评价标准下的高效益,做一名成功的“三型”式初中数学课改实验教师。
关于三角形的日记 【九】
一、说教材
全等三角形是八年级上册人教版数学教材第十一章的教学内容。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
根据课程标准,确定本节课的目标为:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
二、说教法
本节课以学生练习为主,教室归纳总结为辅的教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。
1、教学生观察、归纳的方法
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
2、通过设疑,启发学生思考
根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。
三、说学法
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
四、说教学流程
本节课的教学过程是:首先,展示教师制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,让学生阐述全等三角形的性质和判定。并通过练习来理解全等三角形的性质和判定,并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质和判定解决一些简单的实际问题。
一、教材分析
1.教材的地位和作用
本节课内容为全等三角形,是人教版数学八年级上册第十一章《全等三角形》的内容。它是继线段、角、相交线与平行线及三角形有关知识之后出现的,通过对本节的学习,可以丰富、加深学生对已知图形的认识,同时为后面学习全等三角形的条件、等腰三角形与轴对称作好铺垫,起着承上启下的作用。
2.教学的目标和要求
根据大纲要求及所教学生的实际情况,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
(1)了解全等三角形的概念,会用平移、旋转、翻折等方法判定两个图形是否全等;
(2)知道全等三角形的有关概念,能在全等三角形中正确地找出对应顶点、对应边、对应角;
(3)能熟练地说出全等三角形的性质和判定,并会运用。
(二)能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
(3)通过学生练习,提高学生几何证题能力。
(三)情感目标:
通过各种真实、贴近生活的素材和问题情景,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。
3.教学重点:
全等三角形的性质、判定及其应用。
4.教学难点:
(1)能在全等三角形的变换中准确找到对应边、对应角。
解决方法:利用动画的形式让学生直观的识别具体的图形和知识点从而突出和掌握重点。在对应边、对应角的识别查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点。
(2)判定条件的对应性及顺序性。
二、教学方法
本节课以学生练习,老师点拨归纳等教学方法。教师一边用多媒体演示讲解,一边让学生在观察的基础上动手、动脑,充分调动学生的积极性和主动性。只有学生积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。同时引导学生寻找题目的隐含条件,启发学生发现问题,思考问题,培养学生的逻辑思维能力,推理论证能力,分析问题解决问题的能力,逐步设疑,创设问题情景,搭建参与平台,让学生积极参与讨论,肯定成绩,及时表扬,使学生感受成功的喜悦,提高他们学习的兴趣和学习的积极性。
关于三角形的日记 【十】
一、说教材
《认识三角形》是苏教版四年级下册上的内容,在此之前,学生已经学习了角,初步认识了三角形,但对三角形的三边关系未曾探索,本课将引导学生探究三角形的三边关系,理解任意二边之和大于第三边。教材给我们提供2个例子,例题1提供场景图让学生观察,并找出其中的三角形;再联系日常生活说说还在哪里看到三角形。通过找和说唤起学生对三角形初步认识的回忆,从整体上初步感知三角形。例题2让学生任意选三根小棒围一个三角形,在此活动基础上我增加了让学生找出第三边的长度范围,这样使学生知道三角形第三边的长度是有一定范围的,更容易发现三角形任意两边之和大于第三边。最后教材还安排"想想做做",让学生及时巩固所学的知识。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索规律等方面发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验。
二 说教学目标
根据这一教学内容在教材中所处的地位与作用,以及新课标的要求"人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展".结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:
知识与技能:1.使学生知道任意两边之和大于第三边。
2.能判断三条线段的长度能否组成三角形。
过程与方法:1.在学生探索三角形三边规律的过程中,培养学生自主探索学习的能力。
2.在学生探索发现规律后,培养学生自主总结得出结论。
情感、态度与价值观:1、鼓励学生探索发现,培养学生小问题大钻研的精神。
2、在数学中很注重结论的严谨性,培养学生严谨的学习态度。
三、说教学的重点和难点。
本节课的重点、难点:使学生理解任意两边之和大于第三边
四、 说教法学法
在教法上采用实验法、以及分组讨论、合作学习的形式,并运用多媒体课件辅助教学,让学生动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。
在学法指导上,我将充分发挥学生的主体作用,留有足够的时间和空间激发他们主动探索。借鉴杜威"做中学"的思想,将学生分成5人学习小组,让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究的课堂教学氛围,将课堂的主动权真正还给学生,让学生在自主活动中得以发展。
五、说教学过程
1、联系生活,提出问题:出示情景图,找出图中的三角形。把数学问题与生活情境相结合,让数学生活化。学生联系生活说说见到过的三角形,把数学教学与学生的生活体验相联系,生活数学化。从整体上初步感知三角形,再抽象出图形让学生认识,教师并介绍三角形各部分的名称,帮助学生形成三角形的概念。让学生思考:三角形是由三条边组成的,那是不是任意三根小棒都能搭成三角形呢?
2、动手操作,合作探究:小学生好奇、好动,根据小学生的心理特征,教师要千方百计为学生提供操作的机会,手脑并用,化抽象为具体,让每一个学生参与到教学过程之中,让学生在动手操作中掌握知识、发展智力,在动手操作中激发出创新的潜能,体验到发现的乐趣、成功的愉悦。
第一层次是动手操作,发现问题;为每组同学准备好的4根小棒(10厘米、8厘米、5厘米、2厘米),任选其中的3根围一围。并设计"从中你有什么发现?"为学生自主学习搭建一个平台,让学生在更自由、更广阔的空间中去合作、探索和发现。学生在小组的合作与探究中发现不是任何三根棒都能搭出三角形的。事实推翻了学生头脑中以前的错误认知,激起了思维的矛盾,使学生不得不重新认识三角形三边之间的关系。这种重新认识是学生对三角形三边关系认识上的第一层次。
第二层次是小组合作,探究规律;我抓住契机巧妙设疑:任意选择三根小棒,为什么有的能围成一个三角形,而有的就不行呢?想不想知道其中的秘密?提出活动二的要求:给你两根小棒,一根10厘米,一根8厘米,你还能配多长的小棒和它们组成三角形?两人合作把小棒的长度量出来,比一比谁配的小棒最短?谁配的小棒最长?课堂上,学生小组的合作交流、形成头脑风暴,我有充分的时间去关注学生的动态生成,多方面的深入了解学生的情况,及时点拨。接着组织学生交流,交流时适时运用几何画板演示验证。从而使学生知道第三条边的长度是有一定范围的,这种初步认识是学生对三角形三边关系认识上的第二层次,也是学生思维发展必然经历的一个阶段。
第三层次是推广验证,得出结论。第一步教师引导(学生比较围成三角形的三根小棒的长度,用语言叙述三角形的三边关系;第二步全班交流,教师引导学生把结论写规范。重点帮助学生理解"任意"两字,我这样引导学生思考:刚才活动一中10厘米、8厘米、2厘米不能围成三角形,那10厘米和8厘米的和也大于2厘米的,为什么不能围成三角形?你认为对于三角形三边关系,怎样表达更严密?最后学生终于发现:三角形任意两边之和大于第三边。对"任意"二字的理解,使学生对三角形三边之间关系的认识得到了深化。这种深化的认识和理解是学生对三角形三边关系认识上的第三层次。
3 深化认知,拓展应用。
基础练习 在线测试,接着实时反馈测试情况。这部分的练习巩固了基本的知识点,强化教学重点和难点,提高学生对组成三角形的规律的认识,掌握更好的判断方法——较短两条线段之和大于第三条线段,便可构成三角形。
关于三角形的日记 【十一】
教学目标:
1、在原有的认知基础上,通过自学书本、观看视频讲解,逐步认识三角形,知道三角形各部分名称并概括出三角形的定义;学会用符号语言表示三角形。
2、认识三角形的高和底,会画三角形的高。
3、联系生活实际、通过实验操作理解三角形的稳定性及其应用,感受到三角形的三边长度固定,形状大小就确定的稳定性的本质。
4、培养学生的空间观念;感受数学与生活的联系,学会用数学的眼光看生活。
相信大家已经进行了自学,认真看过学习视频了,那今天这节课我们要做些什么呢?
(1)请小老师上台画三角形。
(3)哪位小老师给大家介绍一下,你对“围成”二字的理解呢?
(4)还知道三角形有()个顶点、()条边、()个角?师板书:3个顶点、3条边、3个角
为了表达的方便,现在可以给这个三角形取个名字了吧!
说一说角A角B角C,各条线段的名称。
(3)同桌互相交换,拉一拉,谈发现;前后排的同学转过来比一比,谈发现。
(4)说一说生活中哪里有应用到三角形的稳定性呢?
2、请画出下面三角形中指定底边上的高。
(1)实物投影校对。
(2)直角三角形中,两条直角边互为高和底。
(3)利用第3个三角形找一找外高,指一指。
画一个三角形及一条底边上的高,旋转三角形。
师:孩子们,让我们静静地看大屏幕,静静地回忆。
关于三角形的日记 【十二】
尊敬的各位老师:
大家好!
今天我说课的题目是义务教育数学课程标准实验教材八年级下册第四章第六节的《探索相似三角形的条件(一)》这一课内容。下面我分五部分来汇报我这节课的教学设计,这就是“教材分析“、“教学”、“学法”、“教学过程”、“教学评价”。
一、教材分析:
(一)教材的地位和作用:
“探索相似三角形的条件”是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件(二)(三)打下好的基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我本节课的教学目标确定为:
l知识目标:
①掌握三角形相似的判定方法(一)。
②会用相似三角形的判定方法(一)来判断及计算。
l能力目标:
①通过亲身体会得出相似三角形的判定方法(一),培养学生的动手操作能力。
②利用相似三角形的判定方法(一)进行有关判断及计算,训练学生的灵活运用能力。
l情感目标:通过实物演示和电化教学手段,把抽象问题直观化,从而发
展学生的合情推理能力,进一步培养逻辑推理能力。
(三)教学重点与难点
这节课的重点是三角形相似的判定定理1及应用。
难点是三角形相似的判定方法1的运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。
二、教学方法的选择与应用
根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验、观察、讨论”的教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、点燃思维火花(趣味题目引入,配以动画演示)
1、为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A、B、D,使得AB┷AO,DB┷AB,然后确定DO和AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮助他们算出峡谷的宽度AO吗?
(设计意图:以趣味性题目引入,从而引起悬念,激发学生的学习兴趣。)
假如利用相似三角形原理可不可以解决这个问题呢?那么如何判定这两个三角形相似呢?这就是我们这节课要学习的内容。(引出课题)
(二)、动手实验探索(分小组研究讨论)
还记得全等三角形的判定方法吗?那么判定相似三角形要不要这么多条件呢?假如当条件只有角这个元素时,能不能判定两个三角形相似呢?
1、若有一个角对应相等,能否判定两个三角形相似?
(投示)(1)每人画一个△ABC,使∠BAC=60°,与同伴交流,两个三角形是否相似。
结论:只有一个角对应相等,不能判定两个三角形相似。
2、若有两个角对应相等,能否判定两个三角形相似?
(2)一人画△ABC,另一人画△A′B′C′,使∠A与∠A′都等于60°,∠B与∠B′都等于45°,比较∠C和∠C′是否相等,测量三边长度,探求是否相等。
改变角的度数再试一次。(用三个小组测量结果)
在此过程中,给学生充分的时间画图、观察、比较、交流,最后通过活动让学生用语言概括总结。
引出判定条件1:(学生总结,教师纠正)
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
可简单说成:两角对应相等,两三角形相似.
组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。
通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
(三)、例题讲解:
例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由。
(3)写出三组成比例的线段。
分析:本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。
解:(1)DE//BC
∠ADE与∠ABC是同位角∠ADE=∠ABC,∠AED=∠ACB
∠AED与∠ACB是同位角
(2)△ADE∽△ABC理由是:
∠ADE=∠ABC
∠AED=∠ACB△ADE∽△ABC
(3)△ADE∽△ABC==
想一想:在上面的例题的条件下,=吗?=吗?(学生画图,交流,老师用多媒体演示出来。)
解:由DE//BC得,=
根据比例基本性质得:
=
即=
两边同时减去1,得
1=1
即=
课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。
(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)
(三)随堂练习:
判断题:(让学生判断,老师用几何画板演示)
(1)有一个锐角对应相等的两个直角三角形相似。()
(2)所有的直角三角形都相似。()
(3)有一个角相等的两个等腰三角形相似。()
(4)顶角相等的两个等腰三角形相似。()
(5)所有的等边三角形都相似。()
解:(1)对。有一个锐角对应相等的两个直角三角形相似。
因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。
(2)错。
(3)错。有一个角相等的两个等腰三角形不相似。
例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.
(4)对。顶角相等的两个等腰三角形相似。
因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。
(5)对。因为等边三角形的三个角都是60°。
(设计意图:使学生加深对判定方法(一)的理解。)
(四)补充练习:
(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠C=50°
∴∠A=55°
∴∠B=∠B′,∠A=∠A′
∴△ABC∽△A′B′C′
(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠A=50°
∴∠C=55°
而在△A′B′C′中,
∵∠B′=75°,∠A′=55°
∴∠C′=50°
∴根据判定方法(一),△ABC和△A′B′C′不相似。
(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法(一)的运用)
现再请学生回头看看引入那道题,利用判定方法(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。
通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
(五)、总结提高:
提问:“通过这节课的学习有什么收获?”
(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)
(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)
(六)、分层作业:
(必做题):P119的习题4.7的1、2
(选做题):
如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。
(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)
l新的探索:(提高题)
(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.
分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.
(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)
四、教学评价:
为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题、实验、观察、讨论、总结”这符合现代教学理论的'观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。
五分钟小测:
1、
C
如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为xx,对应边的比例式为xx
A
E
B
D
2、
A
如图:∠BAC=∠ADB,图中有相似三角形吗?
为什么?
D
C
B
3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.
关于三角形的日记 【十三】
一、教学方法
让学生通过欣赏来自生活中的精美图案,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法,从而体会什么样的两个图形是全等三角形。
二、教学过程设计
1、本节课我本着以学生为主,突出重点的意图。在全等图形的定义推导中,我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题。而全等图形的特征及对应边、对应角的寻找这一难点,我通过具体练习让学生总结,并带领学生归纳快速寻找对应元素的方法,练习的设计由易到难,符合学生的思维发展,循序渐进,突破了本节课的重点和难点。
2、在总结全等图形时,让学生寻找在生活中实例,体现了数学与生活的联系。让学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。然后,阅读课本准确把握全等形和全等三角形的概念。
3、从教学流程来说:情境创设——自学概念与特征——练习与小结——变式练习 ——数学应用。我创造性调整了教学顺序:在学生掌握了全等图形定义和特征后,增添了具有民族特色的常见图形练习,为全等图形的变换奠定了基础。再通过探究实践,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。既突破了本节课的重点和难点,又培养了学生传承中国民族文化的责任感。
三、不足之处。
学生在用数学语言表达时说不清楚,因此在今后的讲授过程中需加强几何语言表达的训练。
关于三角形的日记 【十四】
教学目标
一、知识与技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法
通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观
通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点
1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。 教学难点 正确寻找全等三角形的对应元素。
教学关键
通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备: 教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个
教学过程设计
一、全等形和全等三角形的概念
(一)导课:
教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义
象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]
动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]
命名:给这样的图形起个名称————全等形。[板书:全等形]
刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
(三)全等三角形的定义
动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。 定义全等三角形:能够完全重合的两个三角形,叫全等三角形。
(四)出示学习目标
1、 知道什么是全等形,什么是全等三角形。
2、 能够找出全等三角形的对应元素。
3、会正确表示两个全等三角形。
4、掌握全等三角形的性质。
二、全等三角形的对应元素及表示
(一)自学课本:第1节内容(时间5分钟)可以在小组内交流。
(二)检测:
1、动手操作
以课本P91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)
思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?
归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。
2、全等三角形中的对应元素
(以黑板上的图形为例,图一、图二、三学生独立找,集体交流)
(1)对应的顶点(三个)———重合的顶点
(2)对应边(三条)———重合的边
(3)对应角(三个)——— 重合的角
归纳:
方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。
3、用符号表示全等三角形
抽学生表示图一、图二、三的全等三角形。
4、全等三角形的性质
思考:全等三角形的对应边、对应角有什么关系?为什么?
归纳:全等三角形的对应边相等、对应角相等。
请写出平移、翻折后两个全等三角形中相等的角,相等的边。
-
更多精彩的关于三角形的日记,欢迎继续浏览:关于三角形的日记