一起合同网

导航栏 ×

代数思想总结(热门11篇)

发布时间:2023-07-24

代数思想总结(热门11篇)。

✪ 代数思想总结

数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。这不禁让我重新对这一理念加以剖析。19世纪恩格斯说:“数学是关于空间形式和数量关系的学科。”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。下面从三个方面谈谈自己的感想。

(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”

可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。

(二)“数与代数”有利于发展学生思维、能力,培养数学情感的数学。在提倡“人人学有价值的数学”的今天,将这一理念落实到中学阶段,就要求我们教师不仅仅要关注学生知识技能掌握如何,更要关注到学生的情感、态度、价值观和一般能力的培养。学生的思维能力、思想方法、习惯、情感和态度对于学生今后去创造生活有着不可估量的价值。因此,“数与代数”作为基础部分,它的主要内容是研究现实世界数量关系和运动、变化规律中的数学模型,它可以帮助人们从数量关系的角度更准确、清晰的认识、描述和把握现实世界和解决现实世界的问题,能有效发展学生思维、培养数学情感的,就是有价值的数学。

“数与代数”这一基础部分不仅能在数的运算、公式的推导、方程的求解、函数的研究等活动中通过对现实情境中数量关系及其变化规律的探索促进学生探究和发现,培养初步的创新精神和实践能力,还能利用正数与负数、精确与近似、方程与求解、已知与未知等概念中蕴涵着对立统一的思想,变量和函数概念中蕴涵着的运动、变化的思想,促进学生用数学、科学的观点认识现实世界!

✪ 代数思想总结

同学们在学习线代的时候觉得有难度。我认为有两个方面的原因:

1.大家在学习了高数后,难免在学习线代时后劲不足;

2.线代知识体系错综复杂,联系比较多,大家往往搞不清联系。

下面,跨考教育数学教研室的向喆老师跟大家说说一些难理解和常考的概念。今天所说的是线性代数中的矩阵学习问题,大家分三个步骤来学习。

首先,构建矩阵知识框架。矩阵这一章在线性代数中处于核心地位。它是前后联系的纽带。具体来说,矩阵包括定义,性质,常见矩阵运算,常见矩阵类型,矩阵秩,分块矩阵等问题。可以说,内容多,联系多,各个知识点的理解就至关重要了。

然后,把握知识原理。在有前面的知识做铺垫后,大家就要开始学习矩阵了。首先是矩阵定义,它是一个数表。这个与行列式有明显的区别。然后看运算,常见的运算是求逆,转置,伴随,幂等运算。要注意它们的综合性。还有一个重点就是常见矩阵类型。大家特别要注意实对称矩阵,正交矩阵,正定矩阵以及秩为1的矩阵。最后就是矩阵秩。这是一个核心和重点。可以毫不夸张的说,矩阵的秩是整个线性代数的核心。那么同学们就要清楚,秩的定义,有关秩的很多结论。针对结论,我给的建议是大家最好能知道他们是怎么来的。最好是自己动手算一遍。我还补充说一点就是分块矩阵。要注意矩阵分块的原则,分块矩阵的初等变换与简单矩阵初等变换的区别和联系。

最后,多做习题练习。在前面有了知识体系和掌握了知识原理后,剩下的就是多做题对知识进行理解了。有句古话:光说不练假把式。所以对知识的熟练掌握还是要通过做题来实现。同时,我也反对题海战术,做题不是盲目的做题,不是只做不练。做题应该是有选择的做题,做一个题就应该了解一个方法,掌握一个原理。所以,大家可以参考历年真题来进行练习。每做一个题,大家就该考虑下它是怎么考察我们所学的知识点的。如果做错了,大家还要多进行反思。找到做错的原因,并且逐步改正。这样才能长久的提高。

总之,希望大家在学习线性代数的矩阵的时候把握这三个原则,在此基础上,勤思考,多练习,那么大家一定可以学习好,祝大家考研成功!

✪ 代数思想总结

一、说教材:

代数式是在学生学习了用字母表示数的基础上,进一步拓宽知识,它既是有理数的概括与抽象,又是整式运算的基础,也是学习方程应用题,进一步学习函数知识等的基础。列代数式,即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验,使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换。它可以帮助人们从数量关系的角度更准确清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的紧密联系。

二、说目标:

2.1 教学目标

根据学生已有的知识基础,依据课程标准和教材分析,确定本节课的教学目标:

1、知识与技能目标:了解代数式的概念,会列出代数式表示简单的数量关系,发展符号感,掌握代数式的有关书写格式。

2、过程与方法目标:在具体情境中让学生经历代数式概念的产生过程,分析归纳得出代数式的概念,从而学会用代数式将问题中的数量关系表示出来,并通过合作,比较总结出列代数式的注意事项。

3、情感态度与价值观:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间,通

过列代数式表示生活中的简单数量关系,使学生体验列代数式的实际意义与建模思想方法的实际应用价值。

2.2 重难点

代数式的概念是代数学的最基本的概念,是今后学习各类代数式的基础。列代数式是学习列方程的基础,因此代数式概念与列代数式是本节的重点。如何引导学生分析实际问题中的数量关系列出代数式,是本节难点。

教师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

三、说教法:

3.1 教法分析

针对初一学生的年龄特点和心理特征,结合他们的认知水平,采用启发式,讨论式等教学方法。在教学中注重情境的设置,过程的体验,数学思想的渗透,让学生有充分的思考机会,便课堂气氛活泼,有新鲜感。

3.2 学法分析

“授人以鱼,不如授人以渔”。教给学生如何学习是教师的职责。因此在“代数式”教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松、愉快的课堂气氛中亲身体验知识的形成过程。

3.3 教学手段

采用多媒体辅助教学,增大课堂教学容量,使学生能充分地学习数学,提高课堂教学效率。利用投影仪进行集体交流,及时反馈信息。

四、说设计:

4.1 导入设计

1、创设情境,引入新课(用多媒体展示)

①搭个这样的正方形需要多少根火柴棒?

②每根火柴棒的长为个正方形的面积为,则一个正方形的周长为,两③一个正方形的面积是个正方形面积的

④一个正方形面积为则它的边长为先独立思考,再小组交流(四人小组),目的:①把不规范的写法列举出来;②写出正确结果。

通过上面四题,还有加减乘除,乘方,开方六种运算,再通过一题多变为代数式概念的得出作铺垫。

2、展示新知:

问:这些式子有什么共同特征?

请学生发表自己的见解,归纳得出用运算符号把数或表示数的字母连结而成的式子叫代数式。注意教师强调:单独的一个数或字母也是“代数式”。

书写代数式请注意以下几点:

(1)

(2)通常写为·或(乘号省略) 通常写作 (除号用分数线表示)

不写成 (3)数字写在字母的前面。如

3、应用新知

为了及时巩固,帮助学生对所学概念理解,讲完概念后,教师先不忙着讲例题,而是根据学生的实际情况和他们的心理特点,设计了三个习题。

(1) 判别

④ 不是代数式; 是代数式; 是代数式; 是代数式。

判别的时候要紧扣定义,定义其实由两部分组成:①用运算符号把数或表示数的字母连结而成的式子叫代数式;②单独的一个数或字母也是代数式。含有“=”或“”这类符号的式子都不是代数式。

(2)下列式子中符合代数式书写要求的是( )

(A) (B) (C) 千米 (D)·3

(3) 用代数式表示米与厘米的和的式子:

① 厘米 ② 厘米 ③ 米 ④ 厘米, 四个式子中正确的是 ( )

(A) ①② (B)③④ (C)①③ (D)②③

4.4例题教学

例1. 用代数式表示:

(1)的3倍与3 的差; (2)的2 倍与的的和;

(3)与的和的平方; (4)与的平方的和;

(5)与两数平方的和; (6)的立方根.

例1的目的是让学生体会代数式可以简明地,具有普遍意义地表示实际问题中的量,给数量关系的研究带来方便。设计由浅入深,从倍分和差到平方、立方根,从低级到高低,符合学生的认知规律。另一方面,要求学生书写规范。

例2. 一辆汽车以80千米/小时的速度行驶,从A城到B城需小时。如果该车的行驶速度增加V千米/小时,那么从A城到B城需多少时间?

为了帮助学生更好的理解,突破难点,我把例2分解成下面几个问题:①这是小学学过的哪类应用题?②行程问题中的三个主要量的关系如何?③一辆汽车以80千米/小时的速度行驶,从A城到B城需小时,则A城到B城总路程是多少千米?④这辆汽车原来的速度为80千米/小时,其速度增加V千米/小时后,该车的速度是多少?⑤在总路程不变的前提下,那么汽车提速后从A城到B城需多少时间?

在层层设问的前提下,引导学生如何分析,起到潜移默化的作用。

✪ 代数思想总结

[论文摘要]随着计算杌的普及与应用,多媒体教学已经逐步走进课堂,而且在现代教学中起着越来越重要的作用。本文分析了线性代数多媒体教学的优势与不足,并根据多年从事线性代数教学的经验,给出了如何将多媒体技术运用于线性代数教学的几点建议。

线性代数是理工类、经管类数学课程最重要的基础课之一,其基本内容是讲授向量空间和矩阵的理论。线性代数在数学、力学、物理学和技术学科中有着各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。随着科学的发展,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。线性代数对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用,但普遍被学生认为是比较困难的一门课程,主要的困难是太抽象。多媒体作为一种现代的教育技术,在很多方面显示出其优越性,如何将多媒体技术与传统的教学手段良好的结合并应用于线性代数的教学中,是一个值得关注的问题。

教学内容多,课时少一直是很多高等学校线性代数课程的一个重要矛盾。我们都知道线性代数课堂教学的特点是板书量大,费时,费力,而用多媒体教学一些重要的定义、定理作成课件直接播放,节省了教师的板书时间,同时增加了更多的'讲解和补充其他内容的时间,可以在短时间内向学生提供更多更有效的信息,有效节省了师生的时间和精力,提高了课堂的学习效率。

传统教学中都是教师在讲台上讲解,学生面对黑板这样单一的教学模式,利用多媒体技术,通过图像、声音、动画等形式,可以形象直观的展现一些问题的求解过程。另外,利用多媒体还可以增加数学史,数学家轶事等内容,拓展学生的知识面,从而提高了学生的注意力,降低了传统授课方式的枯燥感,增加了学生的学习兴趣。

线性代数是一门应用性很强的学科,而传统的教学模式教学效果差,不利于学生创新意识和创新能力的培养。随着科学技术的不断发展,计算机的大规模普及,使得数学实验和数学模型进入到教学环节,运用线性代数中的矩阵、线性方程组等内容建立投入产出模型、Leslie人口模型等数学模型,有利于培养学生分析问题和解决问题的能力,为培养创新型人才奠定基础。

随着科学技术的发展,教学手段的日益现代化,多媒体教学已成为现代课堂教学的主要教学手段之一,其教学手段的直观性,教学内容的丰富性,使其具有广阔的应用前景。但多媒体作为一种新兴的教学手段,必然会存在着一定的不足,尤其在线性代数这门具有高度逻辑性和严密推理性的学科的教学中。例如,节奏快,不利于保持学生思维的连续性,不利于学生记笔记;纠错,应变能力差,不利于教师临场的即兴发挥;过多色彩动画、音效使学生眼花缭乱,分散学生注意力;不利于教师和学生良好的互动。"

线性代数教学中需要多媒体技术,但如何合理的将多媒体技术应用于线性代数课程的教学,是一个值得我们思考的问题。下面结合本人多年线性代数课程的教学经验,对于多媒体技术在线性代数课程中的运用给出一些建设性的建议。

1.虽然多媒体教学相对于传统的教学模式有很多的优势,但并不是所有的教学内容都适合运用多媒体教学,尤其对于线性代数这门具有很强逻辑性的学科。这就需要教师认真备课,钻研教材,根据教学内容有选择的选用多媒体教学。当然,传统的教学模式也有其优势所在,课堂上将传统的教学模式与多媒体教学良好的结合,做到优势互补,以期达到最好的教学效果。

2.色彩、声音、动画是多媒体教学的一大特色,也是最容易吸引学生的注意力,产生学习兴趣的一大亮点,但这些元素的运用不宜过多,否则将会适得其反。因此,教师在制作课件时应该注意,色彩要鲜明,但不要太花哨,声音和动画的运用不要太频繁,以免分散学生的注意力,影响学生对教学内容的理解。而且要充分利用这些优势,例如,对于一些重要的内容要用特殊的颜色加以强调,以加深学生的印象,加强学生的记忆;对于一些概念之间的联系可以采用动画的形式进行演示,使其更直观、形象,易于学生理解。

3.在进行多媒体教学时一定要注意教师与学生之间的交流和互动,把握课堂节奏,不要只顾点击鼠标,照本宣科,让学生感觉是在听报告,而忽略了学生的理鹪和接受情况。课堂上,要多提问,适当的做练习并走到学生中间,了解学生的掌握情况,以便及时调整课堂教学进度,避免教学进度过快,影响教学质量。

4.对于已经讲授完的课件可以传到校园网上,供学生浏览和下载,便于学生温习和记笔记。另外,对于一些习题,思考题也可以在网上给出简要的解题思路,供学生参考和借鉴。

多媒体教学作为现代化教学的一种手段在优化教学效果中起着越来越重要的作用。在教学过程中,恰当地选择运用多媒体技术,可以激发学生创造性思维,提高学生的洞察力,有效地实施素质教育。当然,多媒体也有其局限性,随着科学的发展,其作用将会更大,其局限性也将逐步减小.

✪ 代数思想总结

在代数王国中,有三个鲜为人知的兄弟,分别是大哥二元一次方程,二哥一元一次方程和三弟二元一次方程组。“咚咚”,又是代数王国中一年一度的“比亏联欢会”三兄弟都报了名,并且三兄弟还准备选出一个代表,代表方程家族报名参赛。

大哥说:“这次我一定要当这个代表,因为在方程家族中我最亏,瞧,像爸爸,三元二次方程组,妈妈二元二次方程组,爸爸妈妈都是二次,而我只是一次,我亏。!”

话音刚落,三弟就迫不及待的说:“不对哥哥,你是一次,我是一次,再说你有无数组解,我才有一组解,我亏,我亏”

还没等三弟说完,二哥就泼口大骂:“你们都富有,我才是最亏的呢?你们都是二元,都是一次,都有两组以上的解,而我呢?只有一元,一次,只有一个解,我更亏!”

这时,大哥再以按奈不住了,大声说:“你说你们亏,可解我比过你们都麻烦,浪费我的时间,我更是亏!”这时,三弟哭着说:“你们都还好,不用割你们的肉,要知道肉是连心的,解我,还要消去,我一元,消去一元算了,还有代入和加减法,我更亏。!”三兄弟纷争不休了,终于散伙了。

这时,国王来了,对他们三兄弟说:“你们都别吵了你们都亏而且还是相连的,两个大哥二元一次方程才能组成三弟,如果没了二哥,三弟也没属于你自己的解。你们兄弟三人是代数王国中的功臣,有了你们,才使我们代数王国可以运转我宣布你们都是获奖者!”

兄弟三人听了国王的话,觉得很羞愧,他们又重新合好,为代数王国做贡献。

✪ 代数思想总结

“数与代数”一直是碰触我心灵最敏感的名词,从小学时我就特别喜欢数学,如今又选择了数学教师这一职业的我自认为把数学学得很透、教的很透,但通过这次国培学习,听了专家们的讲解,让我意识到自己的很多不足,自己还有很多需要学习和完善的东西。针对专家对“数与代数”的讲解,让我彻底转变了教学理念,有了如下见解。

“数与代数”的基础知识和代数建模思想不仅培养了利于学生用数学知识解决实际问题的能力,还沟通了小学、中学甚至是大学之间的数学知识的联系,是学生后续学习、工作和日常生活离不开的知识基础。

小学数学教材中数与代数知识领域应该如何进行教学进行讨论?数与代数内容一直以来在小学数学教学中有很大的比重,地位重要,教学价值更重大。在小学,这一知识领域大致包括以下几个方面:

包括对数的理解、数的运算、公式方程、公量和勘探规律等。他们都是研究数量关系和变化规律的一种数学模型,可以帮助人们从数量的关系的角度,更为准确清晰的认识、描述和把握我们的现实事件。与传统的小学阶段的数与代数的教学领域知识相比较,义务教育课程标准之下的小学数学教材,在这一领域中间,它的目标、内容以及处理方式上有了很多实质性的改变。

借助生活经验,让学生体会“数”与生活的密切关系。在“数与代数”的教学中,教师要充分利用学生身边的数学素材,努力唤醒学生已有的生活经验,并向学生展示数的概念的现实**和实际应用,创设有助于学生理解数学的教学情境,以帮助学生把握数概念的实质,真正理解数的意义。

创设具体的生活情景,让学生情景中感受“数”的意义。“数”本身是枯燥的,通过数学活动的体验让学生理解数的意义、建立数感。在数学课堂教学中结合生活中的具体实例让学生感觉数学就在身边,生活中充满了数学,从而能以积极的心态投入学习、体验数感。

应用实践使学生认识到数学的价值。《数学课程标准解读》中指出:“学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用。

只有这样,才能使所学的数学充满活力,实现数学的价值。”这就要求教师必须树立应用意识,注意从小培养学生的应用意识。让学生懂得数学的应用价值,能够形成解决日常生活、工作中的数学问题的能力,让他们感到生活中处处有数学,处处用数学,体现“学习有用的数学”的科学教育理念。

义务教育阶段,通过解决问题,更重要的是培养学生应用数学的意识和数学思考与交流的能力,而不是将学生培养成解决问题的专家。特别是要让学生认识到数学本身是有用的,让他们思考是否能用数学来解决问题。 在这样的思想指导下的应用问题的教与学 , 学生学会了真正意义上的 “ 具体问题具体分析 ”, 学会了如何利用各种手段收集和处理问题中隐含的信息,学会了如何从问题中发现隐含的数量关系,学会了如何从多个角度思考问题,因而也就学会了“举一反三”,获得了初步分析问题、解决问题的能力。

正确掌握知识的整体体系的同时,重视架构知识点之间的联系,促使教师形成有效的教学活动,最终让学生在教学过程中体会到知识之间的相互联系,从而学会整体地把握知识,提高学习效果。所谓明确目标就是必须强化教学目标意识,注重教学目标的有效落实,促使每一个教学过程都能有的放矢,从而使得我们的每一节课都充满实效、充满内涵,真正提升教学质量。

总之,如何提高“数与代数”的课堂教学效率,有待我们在以后的教学工作中不断地去**和摸索,结合自己的教学经验和实践,经常向专家请教和与同行交流学习,不断完善和提高自己的教学效率。

✪ 代数思想总结

教学目标:

1、 能较熟练地运用零指 数幂与负整指数幂的性质进行有关计算。

2、会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。

重点难点:

重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数

1、 ; =; =, =, =。

现在,我们已经 引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数. 那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

(1) ;(2)(ab)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

3、例1计算(2mn2)-3(mn-2)-5 并且把结果化为只含有正整数指数幂的 形式。

解:原式=2-3m-3n-6×m-5n10= m-8n4=

4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

(1)(a-3)2(ab2)-3;(2)(2mn 2)-2(m-2n-1)-3.

1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示 成a×10n的形式,其中n是正整数 ,1≤OaO<10.例如, 864000可以写成8.64×105.

2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表 示成a×10-n的形式,其中n是正 整数,1≤OaO<10.

10-2=

10-3=

10 -4=

例如,上面例2(2)中的0.000021 可以 表示成2.1×10-5.

4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

分 析 我们知道:1纳米= 米.由 =10-9可知,1纳米=10-9米.

所以35纳米=35 ×10-9米.

=35×101+(-9)=3.5×10-8,

所以 这个纳米粒子的直径为3.5×10-8米.

①用科学记数法表 示:

(1)0.000 03;(2)-0.0000064;(3)0.0000314;(4)000.

②用科学记数法填空:

(1)1秒是1微秒的1000000倍,则1微秒=_________秒;

(2)1毫克=_____ ____千克;

(3)1微米=_________米;      (4)1纳米=_________微 米;

(5)1平方厘米=_________平方米; (6)1毫升=_________ 立方米.

本课小结 :

引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立。科学记数法不仅可以表示一个绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足,1≤OaO<10.其中n是正整数

✪ 代数思想总结

注意:口算时“满十进一”,加强低于20以内数的加减法的运算速度。

注意:先编数学故事或数学问题,然后进行解答,注意单位名称。不能解决的问题存入问题银行,日后解决。

注意:相同数位对齐,从个位加起,满十进一。从个位减起,个位不够减,从十位借一当十。

专题训练四:

1.先来计算,算出得数,再比较大小。

2.直接观察和推理,比较两组算式得数的大小。

注意:能口算的可以直接写出得数,不能口算的可以列出竖式计算。

注意:计算每组数的第一个等式后,不经过计算直接写出第二个算式的得数。

注意:题目要求中的“可能”是什么意思? 教学目标:

1.知识目标:摆脱实物学具,熟练地数100以内的数的顺序;理解数的排列顺序及两位数的组成;会比较数的大小。

2.能力目标:通过观察,编座位号,语言表达,活跃学生的思维,开阔学生的思路,提高学生的学习兴趣。

3.情感目标:让学生轻松和谐的氛围中学习数学,体验学习数学的成功和愉悦,培养学生对数学的情感。

看书p89-93,完成学案活动,教师下组指导看书,了解各组学习情况,重点指导学困生。先完成的小组选择展示任务。

交流5分钟,重点交流不会的知识点。

展示25分钟。每组根据任务大小派出若干名同学展示学案的内容,其他同学认真听、认真评,教师对重点问题进行点评。注意:点评时关注易错点:

1.

2.

完善导学案2分钟。

三、检测与反馈

✪ 代数思想总结

在考研数学中,线性代数部分所占分值为22%,虽然所占比例不及高数分值高,但同样重要。在线性代数的学习上,同学们经常走两个极端,有一部分同学感觉线性代数这部分是比较好掌握的,也有一部分同学感觉这部分难度比较大,这个跟线性代数本身的特点应该说是紧密相连的。线性代数课程的特点是系统,前后知识的联系非常紧密,概念性很强,对于抽象性与逻辑性有较高的要求,题型比较固定。考研辅导专家建议考生,在复习时一定要抓住线性代数前后联系的这样一些关键点,把知识连贯起来,就会发现掌握起来是比较容易的。

考研辅导老师提醒考生,考研数学不同于大学数学,大家在看书时如果遇到课程中超前的知识点可以暂时记住,查一下教材上相应的知识点,做个标记,等在下面的章节中复习到或下次老师讲到此类知识点的时候,再回过头来看一看做标记的题目,加以巩固。

✪ 代数思想总结

考研数学线性代数 重视基本概念

线性代数在数一、数二、数三中所占的比例都是22%,分值为33分,最近几年的考研大纲中对线性代数的内容和要求基本保持不变,如果能静下心来认真复习,紧抓基本知识点就能把考研数学中的线性代数的33分全部拿下。

那么如何复习才能在考试时把线性代数的所有相关分值一网打尽呢?

一、心理上要足够重视

可能对于很多考生来说,线性代数所占的33分怎么也比不上高等数学所占的84分重要,所以在复习的时候心理上就先入为主认为高等数学很重要,而且不论是基础班、强化班还是冲刺班的复习也都是从高等数学开始切入的,这导致考生潜意识里就对线性代数疏远。这种状况需要纠正,线性代数的内容不多,重点也很明显,容易掌握,满分是完全有可能的。

二、选择合适的辅导书/辅导班

因为只看课本是不够的,课本的题目缺乏综合性,所以考研复习需要辅导资料的帮助,但是辅导资料太多,要如何选择呢?可以从几个方面评价:看是否按照考试大纲的要求编写,层次是否分明,知识点之间是否共通、是否有联系,不要购买那些含有大量超纲内容的辅导资料,这种参考书只会逐渐地消耗掉你的信心和耐力。辅导资料不在多,而在于精,一定要看透书本,要消化掉。

对于基础不好或者时间很紧的考生来说,可能自己没有足够的时间来规划和复习备考,这时候选择一个好的辅导班就显得很重要了。像暑期特训营就是专门为考生暑期辅导开设的一个班种,辅导老师会根据每个学生的自身基础情况去规划复习过程,所用的教材也是经过筛选、紧贴大纲的好的资料,这样就为学生节省了很多时间和精力,可以好好的按照规划好的步骤复习了。

三、重视基本概念、基本性质、基本方法的理解和掌握

基本概念、基本性质、基本方法一直都是考研数学的重点。有些考生对基本概念掌握不牢靠,理解不透彻,在答题时不知道使用哪个定理、哪个公式,该如何下手,这是基本功不扎实的表现,所以在复习的时候一定要重视基础知识,要复习所有的公式、定理和定义,扎扎实实、一步一个脚印的复习,另外多做一些基础题来巩固这些基本知识。

四、提高解题能力和解题速度

线性代数的主要考点集中在向量组的相关与无关、线性方程组、特征值与特征向量、二次型上面,矩阵与行列式掺杂其中。书中总结出的公式与结论有些可以在解题中直接使用,为了保险起见,可以注明所用公式的原貌。客观题中在不违反逻辑关系的前提下所有公式都可以直接使用。

考生在做题时不要一味的追求难题、偏题和怪题,考研试题主要就是考察考生对基本概念、基本原理和基本方法的掌握程度,并在此基础上加强对考生的运算能力和综合运用所学数学知识分析问题和解决问题的能力的'考察,试题综合性较强,也有一定的灵活性。所以考生平时在做题的过程中需要注意总结一些解题思路,哪种类型的题需要用什么思路,解题过程中容易出错的地方在哪里,这样经过一段时间训练后,在正式考试中看到相似题型后可以迅速确定用哪种解法,大大提高了解题的速度和效率。

复习备考的过程比较长,这是对毅力和信心的考验。当这场马拉松进行到一半的时候,同路的考研人一个个倒下去了,你是否还能巍然不动,继续前行?坚持了,胜利就可能是你的,否则,以前的所有努力全白费。

道理很简单,关键在于是否能付诸行动。坚持到底,胜利就是你的。加油吧!

大学网考研频道。

✪ 代数思想总结

在知识块的教学中常见错误案例分析:

1、信息误解

例:下面这个平行四边形形是根据1:3000的比例尺画出来的,它的底是9厘米,宽式6厘米。这个平行四边形的实际面积是多少?

错解:9×6=54(平方厘米)再求实际面积

分析:没有真正理解比例尺的含义,误认为长度的比也是面积的比。教学中要强调容易误解的内容,促进教学理解。

2、信息遗漏

一个圆柱和圆锥体积相等,他们的底面积的比是3:5,他们的高是几比几?

错解:学生无从下手。

分析:此题有个条件比较隐蔽复杂,既当一个圆柱和圆锥体积相等时,底面积和高成反比例,同时,学生忘记或不能准确处理“”。找出了这些信息,此题就简单了。

3、隐喻的干扰

收音机厂生产一种收音机,现在每台成本是68元,比原来降低了15%,原来每台成本多少元?

错解:68×(1+15%)=78.2(元)

分析:表面看是单位“1”错误,实际上学生出错的根本原因是由负迁移的干扰而产生的认知上的混淆。学生知道现在比原来少了15元,那么原来比现在就多了15元,所以理所当然地认为现在比原来降低了15%,原来就比现在升高了15%。因此,理解百分率的实际意义是解决的关键。

4、数形结合不够

王叔叔买了3本《成语故事》和5本《儿童文学》共用50元。1本《成语故事》比1本《儿童文学》贵6元。《成语故事》和《儿童文学》的单价各是多少元?

错解:《儿童文学》50÷(3+5)《成语故事》50÷(3+5)+6

分析:此题数量关系比较复杂,直接思考很难解决,但是用线段图来表示具体的数量,就既简洁又直观,很快就可以找到“替换”的方法。

5、引实避虚

小张每天读书的页数比小刘多25%,有一本书小张8天读完,小刘几天读完?

分析:学生在未学习比例之前,要弄清一本书总页数一定时,每天都的页数与所需的天数之间的关系很困难。况且题中又没有两人每天都的.页数,增加了难度,但如果假设一个人是已知的,就很好完成了。

6、化整为零

李林喝了一杯牛奶的1/6,

后加满水又喝这杯的1/3,再加满水又喝了半杯,又加满水,最后把一杯都喝了。李林喝的牛奶多还是谁多?

分析:按照常规思维,非常麻烦。不妨采用整体思维方法:李林前后喝了四次,牛奶正好一杯。那么,以为每次都加同样多的水,所以水也是一杯。故喝的水和牛奶一样多。

7、求同存异

例5÷(+)(+)÷

=5÷+5÷=÷5+÷5

=16=

分析:学习了乘法分配律以后,学生并没有真正理解,遇到A÷(B+C)的算式,就采用类比推理导出A÷B+A÷C的错误结论。这就是对比分析,求同存异做得不够。当然,如果学生知道两个式子互为倒数关系,可以转化算式教学计算。

8、概念的混淆

例:写出10以内的质数、合数、奇数、偶数。

错解:奇数、质数无法分辨,偶数、合数无法分清。

分析:学生对概念的内涵、外延理解不够深刻。教学中,要注意挖深、挖透知识的本质特征。

9、练习脱离学生实际

例:小明去买自行车,售货员告诉他“这辆自行车的价格是旁边洗衣机价格(4836元)的1/10的一半”自行车多少元。

分析:从数学逻辑上,这道题目没有问题,好像也贴近了学生生活实际,学生解答问题也不大,但是,课下学生毫不客气的说:这根本不可能发生,都是老师编的,你想想:去商店买东西,售货员不赶紧告诉你价格,还让你站在那里猜,他有病呀!

10、注意克服思维定势的影响

例:正方形的面积是10CM 求圆的面积。

分析:在平时的求圆的面积教学中,强调的是“必须知道圆的半径”所以多数学生面对此题时,一般都会想怎么求圆的半径,但是半径又不能求,导致不能求解。

11、方程的解法。

解方程是采用过去的“根据四则运算各部分之间的关系”还是“根据等式的性质”来解答更容易让学生掌握?教学中,要根据学生的实际来确定。我认为“根据四则运算各部分之间的关系”来解答,在小学阶段更好。

文章来源:https://www.hc179.com/hetongfanben/158702.html