圆周运动教案(集锦11篇)
发布时间:2019-09-02圆周运动教案(集锦11篇)。
◆ 圆周运动教案
(1)认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算;
(1)运用极限法理解线速度的瞬时性.掌握运用圆周运动的特点如何去分析有关问题;
(2)体会有了线速度后.为什么还要引入角速度.运用数学知识推导角速度的单位。
(1)通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点;
(2)体会应用知识的乐趣.激发学习的兴趣。
教学重点:线速度、角速度、周期的概念及引入的过程,掌握它们之间的联系。
教学难点:理解线速度、角速度的物理意义及概念引入的必要性。
新课导入建议在我们周围,与圆周运动有关的事物比比皆是,像机械钟表的指针、齿轮、电风扇的叶片、收音机的旋钮、汽车的车轮……在转动时,其上的每一点都在做圆周运动.你即使坐着不动,其实也在随着地球的自转做圆周运动.
地球绕太阳公转的速度为每秒29.79?km,公转一周所用时间为1年,月亮绕地球运转速度为每秒1.02?km,运转一周所用时间为27.3天,有人说月亮比地球运动得快,有人说月亮比地球运动得慢,你怎样认为呢?
打篮球的同学可能玩过转篮球,让篮球在指尖旋转,展示自己的球技,如图5 4 1所示.若篮球正绕指尖所在的竖直轴旋转,那么篮球上不同高度的各点的角速度相同吗?线速度相同吗?
【提示】 篮球上各点的角速度是相同的.但由于不同高度的各点转动时的圆心、半径不同,由v=ωr可知不同高度的各点的线速度不同.
物体沿着圆周的运动,它的运动轨迹为圆,圆周运动为曲线运动,故一定是变速运动.
(3)圆周运动线速度公式v=Δt(Δs)中的Δs表示位移.(×)
如图所示,若钟表的指针都做匀速圆周运动,秒针和分针的周期各是多少?角速度之比是多少?
【提示】 秒针的周期T秒=1?min=60?s,
分针的周期T分=1?h=3?600?s.
①线速度大小不变,方向不断变化,是一种变速运动.
②角速度不变.
1.描述圆周运动快慢的各物理量意义是否相同?
2.怎样理解各物理量间的关系式?
(1)线速度、角速度、周期、转速都能描述圆周运动的快慢,但它们描述的角度不同.线速度v描述质点运动的快慢,而角速度ω、周期T、转速n描述质点转动的快慢.
(2)要准确全面地描述匀速圆周运动的快慢仅用一个量是不够的,既需要一个描述运动快慢的物理量,又需要一个描述转动快慢的物理量.
◆ 圆周运动教案
这一节课下来,经过听课老师的点评,我感觉收益良多,明白了教学中存在的一些好的方面,肯定了自己;也暴露出自己的一些不足,需要进一步改进。
好的地方在于整个教学思路是清晰的。经过前面班级的授课,我调整了一些内容和讲解的思路,把一些模棱两可的问题变得单一、指向性更强一些;也避开了一些争议的问题;所以上课的时候,节奏不至于过快,条理也很清晰。
做得不足不到位的一点就是与学生互动少,导致课堂越来越闷。这一点我也深有体会,一方面,这一节课的内容属于基础知识的应用——例题的分析讲解,有一种定势思维告诉自己需要由我来主导;另一方面,在把问题抛给学生、学生正回答时,急急忙忙将他们的答案掐断,自己来讲;导致整堂课基本上是我一个人在唱独角戏,学生的情绪也越来越低。学生才应该是课堂的“主人”,老师只是作为一个引导者,启发学生去找到问题的答案;所以在以后的教学中我需要提醒自己,将课堂的主权还给学生。另外,也要摸索调动学生积极性的方法来活跃课堂。
有老师提到这节课的密度过大,其实我不这么认为。在准备前我依据自己的理解和参考教参等资料,将这节课设计为一个课时来完成。纵观课本教材,内容是很少的,梳理完知识点就两个:向心力公式在具体情境中的应用——水平面和竖直面内的圆周运动,离心运动。归根结底也就一个离心运动是还未接触的新的知识点。另一方面,这节课属于应用,可以说是学生第一次接触具体情境问题,我的理解是要让学生先在一个比较浅的层面上来掌握分析的思路,暂不做深入拓展。
有老师提到,语言的严谨性和规范性还是要注意的。这点确实也是我疏忽的一个方面。语言尤其是物理语言的表述严谨体现的是对现象的正确理解和分析,只有正确表述才能引导学生进行对的分析和理解。在接下来的教学中我会特别注意这个问题。
“路漫漫其修远兮,吾将上下而求索!”我的教学之路也正是如此,要在不断的摸索中前进。
◆ 圆周运动教案
教学任务分析
教学目标
知识技能
1.了解圆周角与圆心角的关系.
2.掌握圆周角的性质和直径所对圆周角的特征.
3.能运用圆周角的性质解决问题.
数学思考
1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.
2.通过观察图形,提高学生的识图能力.
3.通过引导学生添加合理的辅助线,培养学生的创造力.
解决问题
在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题
情感态度
引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.
重点
圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.
难点
发现并论证圆周角定理.
教学流程安排
活动流程图
活动内容和目的
活动1 创设情景,提出问题
活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系
活动3 发现并证明圆周角定理
活动4 圆周角定理应用
活动5 小结,布置作业
从实例提出问题,给出圆周角的定义.
通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.
探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.
反馈练习,加深对圆周角定理的理解和应用.
回顾梳理,从知识和能力方面总结本节课所学到的东西.
教学过程设计
问题与情境
师生行为
设计意图
[活动1 ]
问题
演示课件或图片(教科书图24.1-11):
(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?
(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?
教师演示课件或图片:展示一个圆柱形的海洋馆.
教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.
教师出示海洋馆的横截面示意图,提出问题.
教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.
本次活动中,教师应当重点关注:
(1)问题的提出是否引起了学生的兴趣;
(2)学生是否理解了示意图;
(3)学生是否理解了圆周角的定义.
(4)学生是否清楚了要研究的数学问题.
从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.
将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.
引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.
[活动2]
问题
(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?
(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?
教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.
由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.
教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:
(1)拖动圆周角的顶点使其在圆周上运动;
(2)改变圆心角的度数;3.改变圆的半径大小.
本次活动中,教师应当重点关注:
(1)学生是否积极参与活动;
(2)学生是否度量准确,观察、发现的结论是否正确.
活动2的设计是为 引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.
[活动3]
问题
(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?
(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?
(3)另外两种情况如何证明,可否转化成第一种情况呢?
教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.
教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.
教师演示圆心与圆周角的三种位置关系.
本次活动中,教师应当重点关注:
(1)学生是否会与人合作,并能与他人交流思维的过程和结果.
(2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.
教师引导学生从特殊情况入手证明所发现的结论.
学生写出已知、求证,完成证明.
学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.
本次活动中,教师应当重点关注:
(1)学生是否会想到添加辅助线,将另外两种情况进行转化
(2)学生添加辅助线的合理性.
(3)学生是否会利用问题2的结论进行证明.
数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.
问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.
问题2、3的`提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题
[活动4]
问题
(1)半圆(或直径)所对的圆周角是多少度?
(2)90°的圆周角所对的弦是什么?
(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?
(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
(5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?
(6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长.
学生独立思考,回答问题,教师讲评.
对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.
对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.
对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.
对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.
对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.
对于问题(6),教师应重点关注
(1)学生是否能由已知条件得出直角三角形ABC、ABD;
(2)学生能否将要求的线段放到三角形里求解.
(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.
活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.
[活动5]
小结
通过本节课的学习你有哪些收获?
布置作业.
(1)阅读作业:阅读教科书P90—93的内容.
(2)教科书P94 习题24.1第2、3、4、5题.
教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.
教师关注不同层次的学生对所学内容的理解和掌握.
教师布置作业.
通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.
增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.
课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.
◆ 圆周运动教案
【学习目标】
1.根据实例归纳圆周运动的运动学特点,知道它是一种特殊的曲线运动,知道它与一般曲线运动的关系。
2.理解表征圆周运动的物理量,利用各物理量的定义式,阐述各物理量的含义及相互关系。
3.知道圆周运动在实际应用中的普遍性。用半径、线速度、角速度的关系揭示生活、生产中的圆周运动实例。从而对圆周运动的规律有更深刻的领悟。
【阅读指导】
1.圆周运动是____________的一种,从地上物体的运动到各类天体的运动,处处体现着圆周运动或椭圆运动的和谐之美。物体的___________________的运动叫做圆周运动。
2.在课本图2-1-1中,从运动学的角度看有什么共同的特点:_____________________ ________________________________________________________________。
3.在圆周运动中,最简单的一种是______________________。
4.如果质点沿圆周运动,在_____________________________,这种运动就叫做匀速圆周运动。
5.若在时间t内,做匀速圆周运动的质点通过的弧长是s,则可以用比值________来描述匀速圆周运动的快慢,这个比值代表___________________________,称为匀速圆周运动的_____________。
6.匀速圆周运动是一种特殊的曲线运动,它的线速度就是________________。这是一个________量,不仅有大小,而且有方向。圆周运动中任一点的线速度方向就是_______________。因此,匀速圆周运动实际是一种__________运动。这里所说的“匀速”是指________________的意思。
7.对于做匀速圆周运动的质点,______________________________的比值,即单位时间内所转过的角度叫做匀速圆周运动的_________________,表达式是____________,单位是_____________,符号是________;匀速圆周运动是_______________不变的运动。
8.做匀速圆周运动的物体__________________________叫做周期,用符号____表示。周期是描述________________的一个物理量。做匀速圆周运动的物体,经过一个周期后会_____________________。
9.在匀速圆周运动中,线速度与角速度的关系是_______________________。
10.任何一条光滑的曲线,都可以看做是由___________________组成的,__________叫做曲率半径,记作_____,因此我们就可以把物体沿任意曲线的运动,看成是__________
______________的运动。
【课堂练习】
夯实基础
1.对于做匀速圆周运动的物体,下列说法中正确的是( )
A.相等的时间内通过的路程相等
B.相等的时间内通过的弧长相等
C.相等的时间内通过的位移相等
D.相等的时间内通过的角度相等
2.做匀速圆周运动的物体,下列哪些物理量是不变的( )
A.速率 B.速度 C.角速度 D.周期
3.某质点绕圆周运动一周,下述说法正确的是( )
A.质点相对于圆心是静止的 B.速度的方向始终不变
C.位移为零,但路程不为零 D.路程与位移的大小相等
4.做匀速圆周运动的物体,其线速度大小为3m/s,角速度为6 rad/s,则在0.1s内物体通过的弧长为________m,半径转过的角度为_______rad,半径是_______m。
5.A、B两质点分别做匀速圆周运动,在相同的时间内,它们通过的弧长之比sA:sB=2:3,而转过的角度之比 =3:2,则它们的周期之比TA:TB=________,角速度之比 =________,线速度之比vA:vB=________,半径之比RA:RB=________。
6.如图所示的传动装置中,已知大轮A的半径是小轮B半径的3倍,A、B分别在边缘接触,形成摩擦转动,接触点无打滑现象,B为主动轮,B转动时边缘的线速度为v,角速度为ω,试求:
(1)两轮转动周期之比;
(2)A轮边缘的线速度;
(3)A轮的角速度。
能力提升
7.如图所示,直径为d的圆筒,正以角速度ω绕轴O匀速转动,现使枪口对准圆筒,使子弹沿直径穿过,若子弹在圆筒旋转不到半圈时,筒上先后留下a、b两弹孔,已知aO与bO夹角60°,则子弹的速度为多大?
8.一个大钟的秒针长20cm,针尖的线速度是________m/s,分针与秒针从重合至第二次重合,中间经历的时间为________s。
第1节 描述圆周运动
【阅读指导】
1. 曲线运动,运动轨迹是圆的。
2. 做圆周运动的物体通常不能看作质点;物体各部分的轨迹都不尽相同,但它们是若干做圆周运动的质点的组合;做圆周运动的各部分的轨迹可能不同,但轨迹的圆心相同。
3.快慢不变的匀速(率)圆周运动。
4.相等的时间里通过的圆弧长度相等。
5.S/t,单位时间所通过的弧长,线速度。
6.质点在圆周运动中的瞬时速度,矢,圆周上该点切线的方向,变速,速率不变的。
7.连接质点和圆心的半径所转过的角度,角速度,ω=φ/t,弧度每秒,rad/s,角速度。
8.运动一周所用的时间,T,匀速圆周运动快慢,重复回到原来的位置及运动方向。
9. V=Rω。
10.一系列不同半径的圆弧,这些圆弧的半径;ρ;物体沿一系列不同半径的小段圆弧。
【课堂练习】
1. A 2. A、C、D 3. C 4. 0.3,0.6,0.5.5. 1:2,2:1,1:4。
6.小。7. V=3dω/2π
◆ 圆周运动教案
一、教材分析
本节内容选自人教版物理必修2第五章第4节。本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。
(过渡句)知道了教材特点,我们再来了解一下学生特点。也就是我说课的第二部分:学情分析。
二、学情分析
学生虽然已经具备了较为完备的直线运动的知识和曲线运动的初步知识,并学会了用比值定义法描述匀速直线运动的快慢,尽管如此,但由于匀速圆周运动的特殊性和复杂性以及学生认知水平的差异,本节课的内容对学生来讲仍然是一个不小的台阶。
(过渡句)基于以上的教材特点和学生特点,我制定了如下的教学目标,力图把传授知识、渗透学习方法以及培养兴趣和能力有机的融合在一起,达到最好的教学效果。
三、教学目标
【知识与技能】
知道描述圆周运动快慢的两个物理量——线速度、角速度,会推导二者之间的关系。
【过程与方法】
通过对传动模型的应用,对线速度、角速度之间的关系有更加深入的了解,提高分析能力和抽象思维能力。
【情感态度与价值观】
在思考中体会物理学科严谨的逻辑关系,提高分析归纳能力,养成严谨科学的学习习惯。
(过渡句)基于这样的教学目标,要上好一堂课,还要明确分析教学的重难点。
四、教学重难点
【重点】
线速度、角速度的概念。
【难点】
1、二者关系的推导过程;
2、对匀速圆周运动是变速运动的理解。
(过渡句)说完了教学重难点,下面我将着重谈谈本堂课的教学过程。
五、教学过程
首先是导入环节:
在这个环节中,我将展示生活中的一些运动,如摩天轮、脱水桶等,引导学生找相似点:运动轨迹是一些圆,从而引出,这种轨迹为圆周的运动叫做圆周运动——引出课题。
接下来,我会顺势让学生再例举生活中的圆周运动,然后提出问题,直线运动我们用单位时间内的位移来描述物体的运动快慢,那么对于圆周运动又如何描述它们的运动快慢呢?
【意图:这个问题我采用类比的方式去提问,一方面让学生回顾前面学过的直线运动,另一方面让学生带着问题去思考二者的不同,有效的启发了学生的思维,很顺利的过渡到了接下来要讲的线速度和角速度。】
学习线速度的概念时,我会用flash配合实物电风扇的页片,让学生观察当用手缓慢拨动页片转动时,页片上分别标记的红、蓝两种与圆心距离不等的点的运动情况,哪个快那个慢。学生可以讨论发现相同的时间里,通过的弧长长的'点运动得快。于是我们就可以用二者的比值来表示线速度的大小,而且我会引导学生去发现,当时间t足够小的时候,所对于的弧长也非常短,接近于圆弧上的一个点,因此线速度是瞬时速度,它的方向也就是在圆周各点的切线方向。另外还需让学生讨论交流“匀速圆周运动”中“匀速”的含义。
【意图:这是本堂课的一个难点,学生很容于将这里的匀速理解为速度不变。所以在这里我会再次强调速度的矢量性,它既有大小也有方向,这里的“匀速”其实是指“匀速率”,线速度大小不变,但是线速度的方向在时刻改变。】
接下来在学习角速度的概念时,应向学生说明这个概念是根据匀速圆周运动的特点和描述运动的需要而引入的,即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间比值来描述,由此引入角速度的概念。但是在讲述角速度的概念时,不需要向学生强调角速度的矢量性。因为这个会在大学学习刚体力学的时候才学,需要用右手螺旋定则确定。
明确了两个概念之后,本堂课的一大重点就解决了,而依据教学目标,以及学生在学习过程和实际操作中暴露出的问题,如何去推导线速度、角速度之间的数学关系又是本堂课的又一难点。在这里我将带领学生去回顾数学中的表达式,然后让学生自己动手推导。
接下来在巩固提升环节,我将让学生观察自行车传动结构示意图中的大齿轮、小齿轮、后轮三个部分的转动,分析A、B、C三个点线速度、角速度的关系。
【意图:这是高中阶段比较典型额皮带传动问题,关键是要让学生明确两种情况下v和ω的关系:同轴、共线,在此基础上可以再提升难度:当三个轮子一起转的时候,又如何比较快慢,这样问题的设置层层深入,有梯度性,也符合学生的认知规律】
最后是小结作业环节,我将提出如下问题:除了线速度、角速度,还有一些可以用来描述快慢的物理量,如周期T、频率f,他们之间的关系又如何?可以让学生自己尝试推导这些物理量之间的关系。
◆ 圆周运动教案
长方形周长的教师教学反思范文一
教了十几年数学,我觉得自己对教材和学生都掌握得很好,但今年在教学《长方形的周长》时,我才认识到自己的感觉是错误的。
在和学生共同探讨认识了“什么是物体的周长后”,我出示了一个长方形,引导学生开始了如何计算长方形的周长。学生们开始分组探究,学生学习的积极性很高,也很投入。很快,一只只小手接连不断的举起来了。我让小组选代表汇报合作探究的成果:
“9+7+9+7=32(厘米)!”
“9+7+9+7=32(厘米)!” ……
没有出现我的预设效果。我只好进一步鼓励说:“谁有更好的方法?”
“9+9+7+7(厘米)!” 一个平时表现很好的学生站起来发言。
我心里有点失望,可是还鼓励说:“不错!谁还有更好的方法!”
没有同学再举手了。
我说:“汇报的同学说说你们是怎样计算的?”
“我测量了长方形的长和宽,然后两条长加两条宽。就得到了它的周长。”几乎每个同学都如是说。
看到学生自己归纳不出长方形的周长计算公式,我急了,只好硬往公式上引导:我说:“长方形两条长,那 么9+9可以用乘法算式表示9×2。宽用乘法算式表示为7×2。所以,长方形的周长可以用这样一个公式表示:长方形的周长=长×2+宽×2。也可以先算出一条长和一条宽的和,再×2。长方形的周长=(长+宽)×2。”
接下来是课堂练习,我出示了三个长方形让学生计算周长。全班只有一半左右学生用我的公式方法计算,还有一半学生是用加法做的。
这堂课上完后陷入了沉思:以往自己是怎样教的?好像是先告诉学生公式,再引导学生用公式计算长方形的周长。现在提倡学生自主探讨知识,如果硬让他们死记公式是背离新课改要求的 。也许让学生先记公式再学计算周长,就学习成绩而言可能会高点,可是长此以往,学生学到的是死知识,他们的思维永远被禁锢在老师的讲解之下。对这些三年级小学生来说,难道学生自己得出的长方形周长=长+长+宽+宽,不是更直观、更明白的公式吗?!
既然学生心里没有公式,教师就不能把一些刻板、抽象的数学知识强加于他们,只要他们的算法有道理,教师就要鼓励,新课改提倡用不同的方法解决问题,课本上不是也没有像以前那样注明长方形周长计算公式吗?今天他们自己总结出最好记、最好用的计算方法,说不定在不久的将来他们会摘取数学皇冠的明珠呢!
长方形周长的教师教学反思范文二《长方形的周长》这是我刚进学校时,第一次上的公开课的内容,第一次上这内容时的情景在脑中已模糊不清,但是课后明叔点评了一句话:“你这数学课上得像语文课一样。”让我印象深刻。那时的课应该让人感觉十分青涩吧,虽然每个环节师父都细心地指导我,但在自己实践时,仍然有很多地方没有把握到位,那次的公开课只能算是完成了。
在身边老师的指导和时间的磨砺下,如今再来上这个内容时,对于每个环节,该如何设问,已找到了一定的技巧。三年级的孩子已具备了一定的逻辑思维能力,但是逻辑性还不是很强,要想正确引导学生,不能一味地按照老师的思路,而应该多去揣摩学生的思想,然后在他们的思维基础上进行牵引,往往能更有效地达到预期的效果。
在本节课开始时,我仍然采用了一个童话故事进行情境引入,但发现学生的情绪并不如我原来的学生那么高涨,当时便想:难道是我的童话故事学生之前听过?课后我问了问学生,他们说这个故事之前并没有听过。那究竟是什么原因造成了如此不同的反应呢?课后我进行了一番思索。随着计算机的普及,现在很多学生从小就会上网,他们能从网上获取大量的各种各样的信息,这些信息促使了学生的心理开始早熟。曾经喜爱看《喜羊羊》的孩子们到了三年级,心里开始出现矛盾,一方面平时看着《喜羊羊》,另一方面又开始排斥《喜羊羊》,他们觉得这个动画片很幼稚,已经不是他们这个年龄段的孩子该看的动画片了。同样,所谓的童话故事对他们来说也就显得很幼稚了,听到后兴趣自然不会很高。在今后的课中,不管用什么进行引入,都应该先对当时的学生的喜好、心理进行一番了解,而不应该还停留在对原来学生的了解中。时代在变,孩子们也在变,只有顺应了他们身心的发展规律,才能上出一堂好课来。
随后在新授时,学生能利用周长的概念以及长方形的特点推导出长方形周长的三个公式。在运用时,我发现学生普遍都能正确计算出长方形的周长,采用连加的居多,长方形的周长=(长+宽)×2这个公式,学生们却很少用到,这本来是三个公式中最简单的一种,学生却不去选择。难道它现在变得很复杂了?其实不然,这种方法仍然是最简单的一种,只不过现阶段的学生还未学习过多位数乘一位数,如果题中给出很大的数字,用这个公式他们就无法计算出结果。这使我不禁想到,这一册的教材其实是安排了《多位数乘一位数》,只不过在《周长》之后,倘若在教学时,先把《多位数乘一位数》提前上完,再来学习《长方形的周长》时,他们便能用三种方法完整地解决,这时长方形的周长=(长+宽)×2这个公式的简便之处便体现了出来。所以我们平时在教学时是否一定要按照教材的顺序去上呢?这个值得我们去探讨。
长方形周长的教师教学反思范文三一、深入学生,选择素材,创设情境。
对一个学科而言,学生的兴趣、爱好是最重要的。常言道:处处留心皆学问。课余,我特别关注学生喜欢玩什么,怎么玩,并从中得到启发,将学生玩的素材巧妙、合理地运用到数学教学中,使学生对学习的内容产生亲近、亲切感。如在学习长方形的周长这节课时,当我把长方形卡通画片呈现给学生,他们的“情”即刻“热”起来:“好漂亮的画片!”接着,我将画片平移至右,显现长方形画片阴影框架图。实物画片与框架图形成鲜明的对比,既为今天理解长方形的周长奠定基础,又为以后学习面积埋下伏笔。同时,学生真切地感受到:数学是丰富多彩的,绝对不只是简简单单的计算、公式、法则的问题。多彩的画片,激发了学生的好奇心,使他们急于想玩一玩、拼一拼、算一算
二、学玩结合,探索创造,发展能力。
在让学生自主探索、研究长方形的周长时,学生一边列出算式,一边用图形(小棒或线段)展示解题思路,验证了计算方法的合理性,亲身体验,构建数学模型,经历了最基本的科学研究方法的熏陶。老师发给每位同学一份画片,满足了他们“给我一张吧”的愿望;“你能用这些画片拼成新的长方形吗?”激起了学生原本就有的好奇心、求知欲和创造性,因此他们在拼图游戏中能大胆构思、创造,相同的拼法,不同的解法;或不同的拼法,相同的解法。特别是学生在将大小相同的正方形画片连拼成长方形时,由2张画片、3张画片、4张画片的连拼,联想到10张、100张画片连拼成长方形时,由2张画片、3张画片、4张画片的连拼,联想到10张、100张画片连拼后,长方形周长的计算方法,并按这一规律推导出若干张正方形画片连拼成长方形的周长计算公式。是游戏,改善了学生的学习状态,是游戏,使学生的学习建立在主体、积极的、有自信的、主动探索的、集体合作的基础上,参与知识的形成过程,他们的思维在此间产生了质的飞跃,创新能力逐步提升,让我惊喜、让我感叹!
◆ 圆周运动教案
尊敬的各位评委老师:
大家好!我是来自安阳市自由路小学的常帆。
一、教材分析
今天我说课的内容是义务教育课程标准实验教科书数学六年级上册62页至64页的《圆的周长》。这是一节概念与计算相结合的、研究几何图形的教学内容。教材力图通过一系列操作活动,让学生在观察、分析、归纳中理解圆的周长的含义,验证圆周率的形成过程,推导圆周长的计算方法,为学习圆的面积、圆柱、圆锥等知识打下基础。从而培养学生主动探索,勇于实践,解决生活实际问题的能力。
二、学情分析
圆是曲线图形,是一种新出现的平面图形,这在平面图形的周长计算教学上又深了一层。在教学“圆的周长”一课前,多数学生通过各种途径对圆周率已经有所了解,但只是停留在表面上。怎样让学生验证并理解圆周率的意义是个难点。
三、教学目标
(一)知识目标:验证并理解圆周率的意义,理解和掌握求圆的周长的计算公式,并能正确地计算圆的周长。
(二)能力目标:通过测量、验证、推导圆的周长的计算公式等教学活动,培养学生推理、分析、概括的能力和解决简单的实际问题的能力。
(三)情感目标:培养学生勇于探索、积极思考、团结协作的良好行为习惯,让学生在学习中体验数学的价值。另外,通过介绍圆周率的历史材料,进行爱国主义教育。
教学重难点:
重点:让学生通过测量、计算、验证圆周长和直径的关系,理解并掌握圆周长计算方法。
难点:验证并理解圆周率的意义。
四、教学准备
教具准备:多媒体课件、实验记录表。
学具准备:圆形物品、光盘、圆形纸片、画有一个圆的白纸、直尺、绳子、计算器。
五、教法和学法
本节课主要采用尝试教学法和启发教学法,体现学生的主体地位和教师的主导作用。
在学法上,古人说:“授之以鱼,不如授之以渔”。本课教学中,我给学生创造自由宽阔的空间。
(1)、自主探究法,通过动手实践,寻求测量圆周长的方法,培养学生动手操作能力。
(2)、合作交流法,通过学生的团结协作,自主探索,讨论交流,更好地突破教学重难点,培养学生的团结协作精神。
六、教学过程
本节课我设计了以下教学过程:
(一)、创设情境,激发兴趣。
1、故事导入,揭示课题。
“兴趣是最好的老师”。引入新课时我利用课件显示小黄狗和小灰狗比赛跑,小灰狗沿着正方形路线跑,小黄狗沿着圆形路线跑,结果小黄狗获胜。小灰狗看到小黄狗得了第一名,心理很不服气,它说这样的比赛不公平,同学们,你们认为这样的比赛公平吗?同学们一定会争先恐后地说出自己的发现,接着引导学生观察:小灰狗跑的路程实际上就是正方形的什么?怎样求?那小黄狗跑的路程呢?实际是求圆的什么呢?引出本节课的学习内容(板书:圆的周长)
【设计意图:通过创设一个问题情景,让学生不仅复习到正方形周长的含义,同时,进行知识迁移,感知到圆形一周的长度就是圆的周长,激发学生的兴趣。】
2、感悟圆的周长
每个同学桌上都有硬币、圆环、笔筒、易拉罐等物品,找出一个圆形来,摸一摸、指一指圆的周长并用自己的话说说到底什么叫圆的周长。
【设计意图:学生结合实物动手摸一摸圆的周长,使学生较为牢固地掌握圆周长的概念】
(二)、动手操作,探索新知。
1、测量圆的周长
活动一:测量圆的周长
我为学生准备了学具袋,光盘(每组光盘一样)、圆形纸片(每组大小不一)、画有一个圆的白纸(圆的周长一样)、直尺、绳子。让学生以小组为单位,想办法求得所备三个圆的周长。这里提供三种不同的圆让学生测量周长,目的是让学生通过不同的方法来求圆的周长。光盘圆的周长,学生可能会用“绕绳法”和“滚动法”求得向学生渗透“化曲为直”;圆形纸片的周长,可用把圆形纸片对折量出其1/4(或1/8,或1/16,……)是多少的方法求得(分得越细,所得的结果越接近)。而长方形纸上所画圆的周长,因为对于它实际操作较为困难,以求引起学生进一步思考——是否可用计算的方法求得它的周长。
【设计意图:以小组学习的形式,放手让学生去探求圆的周长,目的是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。对于这三种不同的方法,我们更深一层的意义在于让学生的思维不停留在同一个层面上,让每个学生“探究”的能力,都能得以充分的发挥。
2、验证并理解圆周率
活动二:验证并理解圆周率
通过一些相关资料的了解以及在我们学校六年级9个班进行的调查,关于圆周率有多数的学生通过各种途径在教学前就已经有所认识了,圆周长的计算公式也有少数学生有所了解。所以我直接问学生你打算怎么计算这个圆的周长呢?你都了解哪些有关圆周率的知识?学生可能会说出我准备用圆的直径乘圆周率算出这个圆的周长,你都了解哪些有关圆周率的知识?学生可能会说出圆周率用字母π表示,圆周率在3.1415926和3.1415927之间,π≈3.14。此时老师对学生课外知识了解提出表扬。接着让学生小组合作,自主探究,填写下表然后进行全班交流。
(1)、量出光盘和圆形纸片的周长和直径并填表
测量
对象圆的周长
(厘米)圆的直径
(厘米)周长÷直径
(保留两位小数)
光盘
圆形纸片
(2)、汇报
表一:光盘
序号12345
周长(厘米)383837.737.537.2
直径(厘米)1211.7121212
周长÷直径3.173.253.143.133.10
表二:圆形纸片
序号12345
周长(厘米)1419.52038.531.4
直径(厘米)4.56.261210
周长÷直径3.113.153.333.213.14
观察表一,你发现了什么?把表一和表二放在一起比较,你又有什么发现?通过观察、比较同一种光盘的不同数据,学生感悟到在测量圆的周长和直径时取的是近似值,这是商不一样的根本原因,也就是说测量时有误差。有了这样的活动经验,学生由简单的类比就可以想到其他圆形实物的数据肯定也有误差。然后,再让学生观察这一系列商的特点,便会发现商虽然多数不一样,但是彼此相差很少。在推测的过程中,引导学生全面而理性地思考:如果没有误差的因素,圆的周长除以直径得到的商应该是一样的,从而深刻地理解、体验圆周率是个固定的数。
【设计意图:在这个过程中,学生切实体会误差,实实在在地感受到误差对实验结果的影响,巧妙地利用实验的误差“变错为宝”深刻理解了圆周率的固定不变是“理想化”的结果,思维得以建构与提升】
3、介绍圆周率的研究史
课件出示:
几千年以来,无数著名的数学家对圆周率π的研究倾注了毕生的心血。你知道吗?我国数学家在计算圆周率方面取得过杰出成就。
约20xx年前,中国的古代数学着作《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,中国有一位伟大的数学家和天文学家祖冲之。他计算出圆周率在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值的计算精确到7位小数的人。他这项伟大成就比欧洲数学家的计算结果至少要早1000年。现在人们已经能用计算机算出小数点后面上亿位。
【设计意图:这样通过合作学习、自主探索、汇报交流,不仅可以突破难点,又能掌握学习方法,同时还能培养学生对科学知识的兴趣;也为我国古代数学家杰出成就而骄傲,并对学生进行爱国主义教育。】
4、推导圆周长计算公式。
活动三:推导圆周长计算公式。
通过对圆周率的验证与每组展示的结果,周长与直径的关系,提炼出圆周长公式,并用字母表示为C=πd(板书)
再根据直径与半径的关系,推导出C=2πr(板书)
现在你能计算出我们纸上圆形的周长吗?已知圆的半径是3厘米。学生计算并汇报
【设计意图:通过思考、探索、分析、发现并总结规律,使学生学会了学习的方法。】
5、自主学习例1
因为学生已经推倒出圆周长的计算公式,所以例1的学习我放手学生,让学生自主学习。
课件出示例1:
孩子们请你和自己的小伙伴一起解答例1,并说说你的思考过程。学生自主解决教师巡视,然后找学生板演并讲一讲自己的想法。
[设计意图:解答时,让学生动脑、动口,培养学生自主学习的习惯和能力。]
(三)、巩固练习,形成能力
1、我是计算小能手
d=5cm,c=?r=14dm,c=?C=94.2m,r=?
【设计意图:通过练习,使学生进一步巩固今天所学的新知识。】
2、我是小法官
(1)π=3.14。()
(2)圆的周长总是直径的3倍。()
(3)圆周率是一个无限不循环小数。()
(4)半径相等的两个圆的周长也相等。()
【设计意图:这组判断题,从正、反两方面进一步强化了本节课的重、难点。】
3、我是小裁判
小黄狗和小灰狗比赛跑,小灰狗沿着正方形路线跑,小黄狗沿着圆形路线跑,结果小黄狗获胜。你们认为这样的比赛公平吗?为什么?
【设计意图:解决课开始的问题,使学生感受到学数学用数学。】
4、生活中的数学
(1)、一只挂钟的分针长20厘米,经过30分钟,分针的尖端所走的路程是多数厘米?经过45分钟呢?
(2)、一块美丽的半圆形地垫,它的直边长80厘米,它一周的长度是多少?
【设计意图:将基础知识进行拓展提高应用能力,让学生有思维的发展空间,用所学的知识解决生活中的问题。】
(四)、总结评价,体验成功
我是用谈话的方式进行小结的:1、你学到了什么?2、你是怎么学到的?3、以你的经验,生活中还有哪些类似圆的周长的实际问题?
【设计意图:这样用谈话的方式进行总结,不仅对所学知识进行了总结、梳理,还体现了对学法的指导,增强了情感体验。】
七、板书设计
圆的周长
圆周率π≈3.14例1:
C=πd
C=2πr
◆ 圆周运动教案
《圆周运动》教学设计
“圆周运动”为物理必修2曲线运动中的内容,是直线运动知识的拓展,也是曲线运动知识的深入研究。本节课中,根据圆周运动的自身的特点,引入了线速度、角速度、转速和周期的概念,这些概念的学习是本章的重点,也是后面几节向心加速度、向心加速度和向心力学习的基础,同时为学习带电粒子在电磁场中运动打下基础。此外,匀速圆周运动与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有重要的意义。
【学情分析】
学生在前面的学习过程中已掌握了有关曲线运动的相关知识,实际生活中有许多鲜活的素材,已经具备了一定的知识积累和生活阅历。同时初步掌握了微元法和比值定义法,再加上在数学上对圆的认识,学生已经初步具备了研究圆周运动问题基本能力,就知识本身而言,本节课的知识对学生来讲不是困难。由于本节课的概念比较多,内容相对其它节而言比较单调,应通过举一些实例引起学生注意力,启发学生思考、总结,认识现象从而理解概念。此外,高一学生已具备一定观察能力和经验抽象思维能力,并对未知新事物有较强的探究欲望。
【教学目标】
一、知识与技能
1、知道圆周运动的概念;
2、通过实际生活中的圆周运动的例子,掌握线速度、角速度、转速和周期概念;
3、学生通过学习圆周运动的模型,理解匀速圆周运动是变速运动,以及速度大小不变,方向时刻在变;
4、掌握各物理量之间的关系,学生会计算圆周运动的一些物理量。
二、过程与方法
1、经历线速度、角速度概念由来的理论探究过程,让学生感受科学探究艰辛和成功的喜悦;
2、掌握发现、总结物理规律的方法:合理猜想、实验法、归纳法,极限法等;
3、通过演示实验及多媒体课件展示获取感性认识,经过理论探究和严密的逻辑推理获得理性的升华。
三、情感态度与价值观
1、通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点;
2、通过合作探究学习,培养学生多动手、勤思考、善于归纳总结的学习态度,提升学生学习物理的兴趣和热情。
【教学重难点】
重点:线速度、角速度的概念,以及描述匀速圆周运动快慢与描述直线运动快慢的方法的比较。
难点:理解线速度、角速度的物理意义。
【教学过程】
为了让学生经历从自然到物理、从生活到物理的认识过程,经历基本的科学探究过程,充分发挥教师的组织者和引导者的作用,激发学生的学习兴趣,培养学生良好的思维习惯和初步的科学实践能力,本节课的教学过程设计如下。
一、创设情境、导入新课
视频播放生活中几种学生熟悉的运动画面,如钟表指针的走动、电扇叶轮上各点的运动、地球的公转,演示系绳小球在竖直平面内运动。请学生观察并提出问题:1、你看到的几种运动有什么共同特点? 2、日常生活中还有哪些这样的运动?教师从而导入新课:这就是我们今天要研究的圆周运动。
设计意图:借助多媒体、实验等直观手段,选用学生熟知的生活素材,充分调动学生的感性认识,激发学生的学习兴趣。
二、联系实际、提出问题
请学生列举一些生产和生活中物体做圆周运动的实例。学生纷纷举例:公园里的摩天大轮的运动、自行车的轮子转动、工厂里砂轮的运动、地球的自转等。
提出问题:做圆周运动物体上的质点,哪些运动得较慢?哪些运动得更快?我们应该如何比较它们运动的快慢呢?引导学生进行分组讨论?寻求问题的答案。
设计意图:以观察实验为基础,进一步引导学生认识物体运动的轨迹形状以及分析物体运动的特点,把物理学与学生的生活实践联系起来,引起矛盾冲突,激发学生的求知欲望。
三、讨论探究、自建概念
学生根据自身的经验,经过交流讨论,大致可形成以下四种猜想。
猜想1:比较物体在一段时间内通过的圆弧长短。
直线运动中引进速度来描述物体运动的快慢,即比较物体在一段时间内的位移,那么在圆周运动中是否可以通过“速度”来描述物体运动的快慢?引导学生分组讨论、探究。
设计意图:利用学生已有的知识,通过对比,根据圆周运动的自身特点,比较自然引导学生过渡到对描述圆周运动快慢的物理量——线速度的学习。
实验探究:如何设计实验测出做圆周运动的物体速度的大小?
实验重点在于能否将曲线运动转化为直线运动,在学生交流讨论中,老师可针对学生实际情况进行有效引导,形成实验方案。
实验方案:采用打点计时器记录时间,用刻度尺测量纸带上的点间距离表示弧长,用弧长与时间的比值来表示速度的大小。
实验器材:学生电源、打点计时器、纸带、手摇转盘、双面胶(用双面胶将纸带固定在转盘边缘上一点)。实验装置如图所示,利用多媒体课件进行展示,并引导学生思考下列问题:
(1)纸带上相邻的点之间的距离反映了什么?
(2)纸带上相邻的点之间的距离不同说明了什么?
(3)转盘边缘上点的运动方向能否通过纸带上的点反映出来?
(4)转盘边缘上点的运动速度是否可以通过纸带上的点来求解?
◆ 圆周运动教案
一、说教材
1、说课内容:
人教版六年制小学数学第十一册第四单元中圆的周长第一课时。2、教材的地位和作用:
这是一节概念与计算相结合研究几何形体的教学内容,它是在学生以前学过的直线图形知识和上节课掌握了圆的初步知识的基础上进行教学的。教材力图通过一系列操作活动,让学生在观察、分析、归纳中理解圆的周长的含义,经历圆周率的形成过程,推导圆周长的计算方法,为学习圆的面积、圆柱、圆锥等知识打下基础。而且在对圆周长有关知识的推导论证过程中,培养学生主动探索,勇于实践,解决生活实际问题的能力。
3、教学目标
(1)知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握求圆的周长的计算公式,并能正确地计算圆的周长。
(2)能力目标:通过对圆周长测量方法和圆周率的探索、圆的周长计算公式的推导等教学活动,培养学生观察、推理、分析、综合、抽象、概括的能力和解决简单的实际问题的能力,同时着力培养学生的动手操作能力、创新精神以及团结合作精神。
(3)情感目标:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感。
4、教学重点、难点
根据教材的编写意图和学生的认知规律,如果学生能理解“任何圆的周长都是它的直径的3倍多一些”这个问题,圆的周长计算公式的归纳就可以迎刃而解了。因此,让学生理解圆的周长计算公式的推导过程及其实践运用是本节课的重点,而理解圆周率的意义则是教学的难点。
二、说教法、学法
《数学课程标准》指出:数学学习内容应当“有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动”、“动手实践、自主探索、合作交流是学生学习数学的重要方式”、“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”,那么,如何体现新课程所提倡的学习方式、教学方式呢?
我的思路是:
1、为学生提供一个合作探究的平台。把学生分成每组4—6人的学习小组若干组,每组配备直尺、绳、数据统计表等学具,让每个学习小组共同完成绳测法、滚动法测量周长,依所测数据找出直径与周长的倍数关系,推导圆的周长公式三个操作活动,经历知识的形成过程。
2、引导学生在认知矛盾中去思考、探究、发现、解决问题。
3、充分发挥多媒体直观、具动感、易交流的优势,更好地突破教学重、难点,同时为学生提供了一个学习交流的舞台。
三、教学所需材料:圆纸片、直尺、绳(系有小球的绳)、数据统计表、多媒体电脑
四、说教学过程:
(一)情境激趣,引发探究。
1、谈话引入:同学们,老师想请你们观看生活中经常遇到的一些片段,看看你们能发现什么秘密?(课件显示:运动员分别绕篮球场以及圆形大花坛跑步的情景)
2、揭示课题:
引导学生认真观察跑步的路线,让他们思考并回答下面三个问题:
(1)要求运动员绕篮球场跑一圈的路程实际就是求什么?
(2)什么是长方形的周长?怎样计算长方形的周长?
(3)要求运动员绕圆形大花坛跑一圈的路程实际就是求什么?
(从而顺势引出课题:圆的周长。)
设计意图:通过师生聊天和创设融洽的教学情景,为学生创造自主学习的轻松氛围。从生活实际出发,把生活实际问题转化为教学问题,调动了学生的积极性和好奇心。
(二)人人参与,探索新知。
1、认识圆的周长
教师先拿出教具——圆,启发学生进行观察,让学生从感性上了解圆周长的含义。
接着,引导学生分析比较长方形、正方形和圆的周长各有什么不同。
然后,让学生根据电脑屏幕上的动态演示,叙述出圆周长的含义。
最后,让学生拿出学具中的圆片比划一下,自己去体验、领会圆周长的含义。
设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。培养了学生把思维过程转化为外部语言,更增强了对圆周长的感性认识,并形象理解圆周长的意义。
2、理解圆周率的意义
活动一:测量圆的周长。
首先让学生商讨:怎么测量圆的周长?都需要什么工具?
然后,指导他们合作测量,并鼓励学生上台向全班同学演示自己的测量方法。
其次,用课件演示学生通常用的绳测法和滚动法。
最后,设疑激趣:绕动一条系有重物的绳子形成一个虚圆,引出矛盾。
设计意图:这样设计由问题引入,激发认知冲突,调动学生强烈的求知欲望,使学生思维进入新课所要解决问题的发展区,为后继教学埋下伏笔。
活动二:探究圆周长与直径的关系,认识圆周率。
1、回忆正方形的周长与边长的关系,让学生猜想圆的周长可能与什么有关?
2、要求每组同学用准备好的三个大、中、小不同的圆片作为测量材料,分工合作,分别测量各圆片的直径和周长,并将数据填入下表。
周长(分米)直径(分米)周长和直径的比值
3、完成后,教师点拨,学生归纳“圆的周长总是直径的3倍多一些”这个结论。
课件演示:“圆的周长总是直径的3倍多一些”
4、学生看书自学后,交流汇报圆周率的含义。
5、引导学生读、写“π”并进一步了解圆周率的历史和趣闻。
设计意图:这样通过合作学习、自主探索、汇报交流,不仅可以突破难点,又能掌握学习方法,同时还能培养学生对科学知识的兴趣;也为我国古代数学家杰出成就而骄傲,并对学生进行爱国主义教育。
活动三:推导圆周长计算公式。
1、引导讨论:求圆的周长必须知道哪些条件?如果已知圆的直径或半径,该怎样求周长?
2、推导出求圆周长公式
C=πdC=2πr
设计意图:这样通过思考、探索、分析、发现并总结规律,使学生学会了学习的方法。
(三)应用新知,解决问题
1、和自己的伙伴一起解答例1和做一做。
2、说出这两题用哪个公式比较好?
设计意图:解答时,让学生动脑、动手、动口,培养学生自主学习的习惯和能力。
(四)实践应用,拓展创新。
依据本节知识特点,我设计了如下三个层次的练习:
1、第一层次:基础题
(1)一个圆的直径是10米,它的周长是多少米?
(2)一个圆的直径是10米,它的周长是多少米?
设计意图:通过第一组练习使学生明白虽然数据相同,但计算出的答案不同,让学生养成认真审题的习惯。
2、第二层次:判断题
(1)π=3.14。()(2)圆的周长总是直径的π倍。()
(3)大圆的圆周率比小圆的圆周率大。()
设计意图:这组判断题,从正、反两方面进一步强化了本节课的重、难点。
3、第三层次:发展题
(1)求黑板上画的圆的周长,你打算怎样做?
(2)我想知道一棵树的横截面的直径,你有什么好的办法?哪种方法最好?
设计意图:这组题让学生从多角度进行思考,既要发展学生的求同思维,也要发展学生的求异思维。
(五)总结评价,体验成功
我是用谈话的方式进行小结的:
1、你学到了什么?(引导学生进行总结、梳理)
2、你是怎么学到的?(指出这些方法还可以用到今后的学习中)
3、以你的经验,生活中还有哪些类似圆的周长的实际问题?
五:板书设计
圆的周长
圆的周长总是直径的三倍多一些。
圆周率:圆的周长和直径的比值叫做圆周率π
圆周长公式:C=πdC=2πr
板书目的:能反映出全课内容的重、难点,形成知识网络,更有助于学生掌握所学的知识
◆ 圆周运动教案
第一课时 (一)
教学目标:
(1)理解的概念,掌握的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
教学重点:的概念和定理
教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.
教学活动设计:(在教师指导下完成)
(一)的概念
1、复习提问:
(1)什么是圆心角?
答:顶点在圆心的角叫圆心角.
(2)圆心角的度数定理是什么?
答:圆心角的度数等于它所对弧的度数.(如右图)
2、引题:
如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是.(如右图)(演示图形,提出的定义)
定义:顶点在圆周上,并且两边都和圆相交的角叫做
3、概念辨析:
教材P93中1题:判断下列各图形中的是不是,并说明理由.
学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交.
(二)的定理
1、提出的度数问题
问题:的度数与什么有关系?
经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.
(在教师引导下完成)
(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半.
提出必须用严格的数学方法去证明.
证明:(圆心在上)
(2)其它情况,与相应圆心角的关系:
当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论.
证明:作出过C的直径(略)
定理: 一条弧所对的
周角等于它所对圆心角的一半.
说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)
(三)定理的应用
1、例题: 如图 OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC.
求证:∠ACB=2∠BAC
让学生自主分析、解得,教师规范推理过程.
说明:①推理要严密;②符号应用要严格,教师要讲清.
2、巩固练习:
(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?
(2)一条弦分圆为1:4两部分,求这弦所对的的度数?
说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.
(四)总结
知识:(1)定义及其两个特征;(2)定理的内容.
思想方法:一种方法和一种思想:
在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.
(五)作业 教材P100中 习题A组6,7,8
第 1 2 页
◆ 圆周运动教案
一、教材分析
“圆的周长”是人教版第十一册第四单元的教学内容。它是研究曲线图形的开始,也是今后学习圆面积及圆柱、圆锥等几何知识的基础。
教材从生活情境入手,先让学生思考自行车绕圆形花坛骑一圈大约有多少米,从而引出圆的周长的概念。接着引导学生思考怎样用不同的方法测量圆的周长,在实践中逐渐体会到有些圆不能测量出周长,怎么办?在此基础上,探索圆周率,并归纳总结计算公式、运用公式解题。为了有效内化计算公式,教材安排了相应的变式应用练习。
笔者以为,本教材有以下特点:一是层次分明、思路清晰、逻辑性较强;二是特别重视实验操作,突出直观教学,让学生在丰富的感性认识的基础上学习新知;三是注重培养学生的实验探究、归纳总结和发现规律的能力;四是通过圆周率的介绍,渗透了爱国主义教育。
二、学生分析
学生在三年级上册已经学习了周长的一般概念,熟练掌握了长(正)方形周长的计算方法。教材直观的情境导入,让学生理解圆周长的概念会很容易。学生已具备测量圆周长的基本技能,关键是圆的周长与什么有关,有什么样关系学生难以想到;或者容易受长方形、正方形周长公式影响,以为圆周长与直(半)径也一定成整数倍关系。这就需要教师适当引导、点拨,通过组织学生进行测量、计算、比较分析等探究活动,找出规律,总结特征。
三、学习目标
知识与技能:理解圆周率的意义,掌握圆的周长的计算公式。
过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育
其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。
四、教学过程:
(一)复习铺垫
1.复习圆的认识。
2.出示长方形、正方形及几个不规则图形,让学生指一指它们的周长,明确其计算结果用的是长度单位。
以上两步同时进行,为理解圆周长的含义做好铺垫。
(二)教学新知
1.在情境中内化概念
(1)具体感知圆周长的概念。
出示情境图(小蚂蚁在正方形和圆形路口爬行),谁能说说小蚂蚁走哪条路近一些?
说明,小蚂蚁走过的路程实际上就是圆的的周长。
师生共同小结:围成圆的曲线的长是圆的周长。
(2)板书课题。
2.在探究中理解公式
(1)设疑激思
鼓励学生用不同的方式测量圆的周长。
用绳测和滚动测量法,测量自己的学具圆获圆形实物的周长。
学生测量了这些圆的周长以后,教师进一步提问:“要是有一个很大的圆,怎么测量它的周长呢?如学校的圆形花坛。”如果学生说用卷尺绕花坛一周进行测量,教师可以举出更多的圆的例子,如空中划出的圆形,引导学生寻求更为一般化的方法。
学生猜想圆的周长是否也有计算公式时?
激思:圆的周长与什么有关?与直径到底有什么关系?
(2)操作填表
同桌两人一组,正确测量学具圆(实物)的周长和直径。并逐一汇总填表。
再次操作:修正自己的测量结果。
(3)比较发现
分别引导学生竖向和横向看表格,比较找规律,计算圆周长和直径的比值,最后比较、分析、归纳出圆周长是直径的3倍多。
(4)归纳总结
介绍圆周率和祖冲之的故事。
推导公式:圆周率=圆周长/直径;推出圆周长=圆周率×直径,圆周长=2×圆周率×半径。
几下字母公式。
3.在运用中强化公式
教学例1独立解题。
练习:口头列式并讲算理,巩固公式。
(三)巩固练习(图略)
基本练习。判断题,直接求周长。
变式练习。在边长4分米的正方形内化画一个最大的圆,再求周长。
综合练习。求阴影部分的周长。
五教学反思
1课前预设的学生活动太少,数学上没有从活动中探究新知;
2课前对学生原有任职的单位太简单,没有具体到学生。
-
更多精彩圆周运动教案内容,请访问我们为您准备的专题:圆周运动教案