一起合同网

导航栏 ×

加法交换律教案

发布时间:2025-03-25

加法交换律教案(分享14篇)。

作为一位兢兢业业的人民教师,通常需要用到教案来辅助教学,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写呢?下面是小编为大家整理的《加法交换律和乘法交换律》教案,欢迎大家分享。

加法交换律教案 篇1

教学目标:

1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展运用意识。

2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。

3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重难点:

理解并掌握运算律,并进行运算。

教学方法:

主动探索法

教学用具:

挂图、卡片

教学过程:

一、情景导入

1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)

2、出示情景图,仔细看图,读懂图中的信息。

(1) 同桌间说信息,提加法问题。

(2) 展示学习成果(师相机贴出问题卡)

(3) 教师小结进入课题并板书:加法运算律

二、探索加法交换律

1、解决问题“跳绳的有多少人?”

(1) 学生自练,展示学习成果。(指两名用不同方法计算的同学展示)

(2) 说说自己的发现。(同桌交流,展示)

(3) 师小结并板书28+17=17+28

(4) 让学生举例(自练)展示教师相机板书

2、讨论交流:

A、每组中的两个算式的异同。

B、这几组算式是不是都具有这样的特点?

C、说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)

D、用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)

E、a+b=b+a(说说字母各表示什么?)

3、练习

357+218(计算并验算)

三、探索加法结合律

(1) 出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法

计算的同学上台板演)

(2) 让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)

交流自己的'发现

(3) 出示两组算式,观察并探索其中的规律。

用学习例1的方法总结出加法结合律,说说其中的字母及识字的含义。

四、巩固理解运算律

卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)

五、总结提高

1、这节课我们学习了加法的哪两个运算律?说说自己的收获。

2、教师小结:

加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。

六、布置作业

完成课后未完成的题目 板书

运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

加法交换律教案 篇2

教学内容:

加法交换律和乘法交换律

教学目标:

1.经历教法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。

2.通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发现应用意识。

教学重点:

经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,渗透归纳猜想的数学思想方法。

教学难点:

归纳猜想的数学思想方法渗透。

教学过程:

一、导入阶段:

出示主题图,向学生介绍“爱心助学大行动”,某商店为帮助贫困山区学生特别举行义卖活动把营业额全部献给希望小学。看,小胖和小亚也来帮忙了

问:从图中你能获得哪些数学信息?

你还能提出哪些数学问题?

二、探究阶段:

1.投影演示:(果汁)师:小亚和小胖各有多少罐果汁?合起来桌上有几罐果汁?谁能列式计算?

师:谁能说出两道加法算式中各部分的名称?

提问:仔细观察一下,这两个算式有什么相同点和不同点?

(相同点是两个加数分别是8和18,和都是26,而不同处只是两个加数的位置不同)

师:因为8+18=2618+8=26所以8+18=18+8

师:有谁能模仿这道题目的形式举出类似的例子?同桌两组相互交流。

(1)根据我们举的例子你发现了什么?(小组交流)

提示:这些例子都是几个数相加?两者之间发生了什么变化?结果怎样?

归纳:两个数相加,交换加数的位置,它们的'和不变。这叫做加法交换律。

(2)让学生用自己喜欢的方式表示加法交换律(启发学生用符号或字母)

例:◆+●=●+◆甲数+乙数=乙数+甲数a+b=b+a这里的a、b可以是哪些数?

加法交换律用字母表示:a+b=b+a

(3)竖式计算74+641

师:运用加法交换律,我们还可以验算加法的计算结果是否正确。

74验算:641

+641+74

715715

小结:验算时,可以将两个加数交换位置后再加一遍。也可以用原来的竖式,把每一位上的数从下往上再一遍。

2.投影演示:

(1)图中小箱里共有几罐果汁?6×3=183×6=18

师:请学生分别读一下以上两个算式,因为这两个算式计算结果相等,所以我们可以把这两个算式用等号连接。

(2)根据我们举的例子你发现了什么?(小组交流)问题:等式左边各有什么相同的地方?

每一组等式的左右两边又有什么联系?

师:这就是我们这节课所要学习乘法交换律。刚才同学们已经用自己的话归纳了一下,那么什么是乘法交换律?(出示结论)

小结:两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。

(3)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?仿这道题目的形式举出类似的例子?同桌两组相互交流。

(4)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?

板书:a×b=b×a

三、运用阶段:

1.根据加法交换律填数

()+270=270+80400+500=()+()()+56=()+44a+()=b+()

2.根据乘法交换律,在()里填上适当的数

34×71=()×()25×976=976×()45×()=55×()303×786=()×303()×▲=()×■()×54=54×37()×()=c×Da×()=c×a

3.竖式计算

64验算:27×27×64

四、总结:

今天这节课我们学习了加法交换律和乘法交换律,并且学会了用字母来表示。还学习了用这两个运算定律来验算加法和乘法。

板书设计:

加法交换律和乘法交换律

8+18=263×6=18

18+8=266×3=18

8+18=18+83×6=6×3

加法交换律:a+b=b+a乘法交换律:a×b=b×a

加法交换律教案 篇3

◇教学内容:

义务教育课程标准实验教科书四年级数学.下册P28-29页内容。

◇教学目标:

1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。

3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

◇教学重点:

理解并掌握加法交换律和加法结合律,能用字母来表示。

◇教学难点:

经历探索加法交换律和结合律的过程,发现并概括出运算规律。

◇教学准备:

多媒体课件

◇教学过程

一、谈话导入,鼓励猜想

1、出示图片牛顿与“万有引力”

2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。

二、合作交流,探索猜想

(一)故事激趣,初次猜想

1、朝三暮四

猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?

2、初步感知,大胆猜想

出示:3+4=4+3

师:仔细观察这两个加法算式,你发现了什么?

得出:两个加数交换位置,和不变。(适时板书)

(二)广泛举例,验证猜想。

师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)

师:既然是猜想,想不想知道猜的对不对?

生:想。

师:我们还得举例验证。

1、举例要求:

(1)任意两个数,求出他们的和;

(2)交换两个加数的位置,再求出两个数的和:

(3)比较两次的结果,判断式子是否相等。

2、学生汇报,师板书。

3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)

4、揭题:大家发现的这个规律叫什么呢?

学生交流后,师板书。

5、用字母表示加法交换律。

(1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。

(学生可能使用文字,图形,符号等方式)

(2)用字母表示加法交换律:a+b=b+a

6、追问:加法交换律中,什么变了,什么没有变?

7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)

(3)出示教材56页的例题情境图。

解决:跳绳的有多少人?

28+17=45(人)17+28=45(人)

(三)规律延伸,猜想拓展。

1、根据反思,拓展规律。

师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?

生可能会说出以下几个想法?

“猜想二:减法中,交换两个数的位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的.位置商不变?”

“猜想五:几个加数时,变换加数的位置和也不变?“

2、举例探究,验证猜想。

师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。

3、汇报交流,验证猜想。

师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结

小结:a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立:b、只要能举一个反倒,就能验证猜想肯定不成立。

(2)验证猜想三。

师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bXa。

(3)验证猜想四

师:哪些同掌选择了“猜想四”,又是怎样做的?

学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。

加法交换律教案 篇4

教学内容:

北师大版第7册

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。教学重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。

教学难点:

学生将实际问题抽象为用字母表示的一般规律,熟练掌握简便运算的一般规律和基本技巧。

教学过程:

一、创设情境,导入新课,学习加法交换律

1、课间操时间,大家都在进行自己喜欢的体育项目,大家说说你在操场上喜欢玩什么?来看看图中的小朋友在干什么?提问:从这张图片中,你获得了哪些数学信息?

你能提出哪些数学问题?(提示:今天主要研究加法运算)根据学生的回答,出示:①参加跳绳的一共有多少人?

②参加活动的一共有多少人?

2、我们先来解决第一个问题:参加跳绳的一共有多少人?

学生独立列式,指名回答,教师板书(28+17=45 17+28=45)仔细观察,比较一下这两个算式有什么是相同的有什么是不同的?它们的结果呢?(两个加数相同,都是28和17,加数的'位置不同,计算结果相同)

你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28为什么能用等号连接起来呢?指出:这两个算式都表示两个数相加,尽管加数的位置发生了变化,但和不变,所以可以用加号连接.你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师随机板书算式,并追问:这样的算式能写几个?

3、我们再仔细的观察这几个算式,,两个数相加时会有什么样的规律呢?象这样的算式还有多少?也就是说任何两个加数相加都存在这样的规律.你们能结合上节课总结乘法交换律和乘法结合律的方法用一个算式来表示你们的新发现吗?

教师巡视,并作相应的辅导,在学生交流,板书:a+b=b+a。

4、教师小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。二.组织练习

完成练习题。下面我们再来研究加法中的另一个规律。

三、学习加法结合律

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

3、学生回答,教师有意识地板书:

(28+17)+23=68(人)28+(17+23)(28+23)+17=68(人)28+(23+17)让回答的同学说说这么列式是怎么思考的?

下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

4、那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)

5、出示:下面的Ο里能填上合适的符号吗?(30+10)+50Ο30+(10+50)(27+23)+47Ο27+(23+47)

6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后全班再交流,教师:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

8、渗透简便运算。计算比赛:两位同学上前比赛,不写过程,直接写得数,看谁速度快!

甲同学计算45+(88+12),乙同学计算(45+88)+12,30秒时间到!停笔!我宣布,甲同学快!乙同学慢!老师这样评价,你们有话要说吗?不公平!尤其是乙同学!甲同学算式中先算88加12,正好凑成100。乙同学呢?(凑不成100)能凑整的快是吗?好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25)(75+25)+48等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。原来巧用运算律还能使一些计算更简便呢!

9、做练习题巩固知识点

58+36+22+64= 357+288+143= 248+192+352= 129+235+171+165=

五、课堂总结

通过本节课的学习,你有什么新的收获?

六、作业与思考题

加法交换律教案 篇5

教学内容

P17:例1“做一做”、练习五:2、3。

教学目标

1、知识与技能:结合具体的情境,引导学生认识和理解加法交换含义。

2、过程与方法:能用字母式子表示加法交换律,初步学会应用加法交换律进行一些简便运算。

3、情感态度与价值观:体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。培养学生观察,比较,抽象,概括的初步思维能力。

教学重点

认识和理解加法交换律含义。

教学难点

引导学生抽象概括加法交换律。

教具学具

多媒体课件

教学过程

一、创设情境

1.引入谈话。

在我们班里,有多少同学会骑车?你最远骑到什么地方?

骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!(多媒体演示:李叔叔骑车旅行的'场景。)

2.获得信息。

问:从中你可以得到哪些信息?(学生同桌交流,然后全班汇报。)问题是什么?

3.解决问题。

问:能列式计算解决这个问题吗?(学生自己列式并口答。)

二、探索规律

1.加法交换律。

(1)解决例1的问题。根据学生回答板书:

40+56=96(千米)56+40=96(千米)

问:两个算式都表示什么?得数怎样?○里填什么符号?40+56○56+40

(2)你能照样子再举几个例子吗?

(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。

(4)反馈交流。两个加数交换位置,和不变。

(5)揭示定律。

问:①知道这条规律叫什么吗?

②把加数换成其他任意的数,交换律还成立吗?【wj62.com 泡泡演讲稿】

③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)

④交流反馈,然后看书:看看课本上的小朋友是怎么说的。

⑤根据加法交换律对口令。

师:25+65=______78+64=______

⑥完成课本第18页下面的“做一做”1

三、巩固提高

1、运用加法交换律填上合适的数

830+420=()+()()+200=()+37

27+29=29+()A+()=20+()

2、完成P19“练习五”第2题。

3、完成P19“练习五”第3题。

四、课堂小结:你有什么收获?

板书设计加法交换律

加法交换律:两个加数交换位置,和不变。

加法交换律用字母表示为:A+b=b+A

加法交换律教案 篇6

教学内容:

教科书第48—49页的内容,练习十一的第1—4题。

教学目的:

1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

2、使学生理解并掌握加法交换律。

教学重点:

加法的意义

教学难点:

加法交换律

教具准备:

小黑板

教学过程:

一、教学加法的意义

教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

1、加法的意义。

(1)教学例1。

教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

137千米 357千米

北京 天津 济南

然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:

“加法是什么样的运算?”

在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

(2)做练习十一的第1题。

要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2.加法各部分的名称。

教师指着137+357=494,提问:

137和357在加法算式中叫什么数?(加数。)

它们相加得到的结果494叫什么?(和。)

然后教师联系的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

1 3 7 + 3 5 7 = 4 9 4

加数+加数= 和

提问:

“我们上面做的加法,两个加数是什么样的数?”(自然数。)

“任何两个自然数相加得到的和都比加数怎样?”(大。)

“一个自然数和0相加得到的和怎样呢?”(还得原数。)

“你能举出一个自然数和0相加的几个例子吗?”

教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)

然后接着问:

“0和0相加会怎样?”(还得0。)

“人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)

二、教学加法交换律

教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

1、结合例1的两种解法,引导学生比较它们的特点。

提问:

“上面”的例1,求北京到济南的铁路长是怎样列式计算的?”

“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137

然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)

引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。

2.再出两组算式,引导学生比较,加以概括。

提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?

教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。

教师板书出下面的算式:

18+17 17+18

124+235 235+124

让学生算一算,再提问:

“每组算式有什么关系? 里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”

3.比较三个等工,归纳出一般规律。

引导学生归纳,突出以下几点:

(1)这三个等式中,每组算式有几个加数?(两个加数)

(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。

4.用字母表示加法交换律。

教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)

学生回答后,教师板书:a+b=b+a

说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。

接着教师提问:

“想一想我们在以前学过的哪些计算中用到了加法交换律?”

使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

5.做第48页的“做一做”。

第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

第2题,验算的竖式可以直接写在原始的右边。

三、巩固练习

做练习十一的第2—4题。

1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。

2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。

四、小结

教师:今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

加法交换律教案 篇7

[新知识点]

同分母分数加、减法

分数数的加法和减法异分母分数加、减法

分数加减混合运算

【教学要求】

1.理解分数加、减法的算理,掌握分数加、减法的计算方法,并能正确计算出结果。

2.理解整数加法的运算定律对分数加法仍然适用,并会运用这些运算定律进行一些分数加法的简便运算,进一步提高简算能力。

3.体会分数加、减法运算在生活、生产中的广泛应用。

【教学建议】

1.加强直观,凸显过程,培养数感。

学习分数加、减法的关键是让学生理解“只有相同单位的数才可直接相加、减”的算理。为了帮助学生理解,在教学过程中,一方面应注意充分利用数形结合的方法,加强直观认识,借助直观图的演示或学具操作,建立表象,理解算理;另一方面要为学生创设参与、探索、概括计算法则的空间,让学生经历观察、操作、猜想、验证的过程,鼓励学生有条理地表达自己的思考过程,揭示算理,概括法则,培养数感。

2.加强对比,沟通联系,促进迁移。

本单元中教材从同分母分数加、减法的法则推导到异分母分数加、减法的法则推导,从整数和小数加、减法的意义,计算法则,加减混合运算顺序到分数加、减法的计算法则、加减混合运算顺序直至加、减法运算定律和性质的推广,无一不体现着知识之间的内在联系。教学中,应充分利用这种内在联系,注意对比和沟通,利用学生已有的知识和经验,感悟新旧知识之间的共同点,让学生通过自己的探索学习新知,这样不仅省时、突出重点,还培养了学生学习过程中的迁移、类推能力。重视口算,强化关键,培养能力。本单元中,分数加、减法中的分子、分母一般都不大,很多计算题可以直接口算出来,因此在计算正确的基础上,提倡能口算的尽量口算,以便提高学生的`计算熟练程度和口算能力。

除重视口算训练外,还应注意练习的针对性,抓住分数加、减法的重点、难点和关键进行练习。当学生计算熟练后,要注意指导学生的计算法则,适当省略式题计算的思考步骤,简缩思维过程,培养求简思维。同时根据计算式题的具体特点,鼓励学生选择灵活的算法或进行简便运算,培养学生的计算能力及思维的灵活性。

4.认真审题,自觉检查,培养习惯。

在教学过程中,老师要重点关注学生审题能力的培养,要引导学生整体感知算式的特点,确定题目的运算顺序。教学中还应重视教给学生险验的方法,培养学生良好的检验习惯。

[课时安排]

1.同分母分数的加、减法……………………………………………………………3课时

2.异分母分数的加、减法……………………………………………………………2课时

3.分数加、减混合运算………………………………………………………………2课时

4.第五单元实力评价…………………………………………………………………1课时

1、同分母分数的加、减法

第一课时

一教学内容

同分母分数加、减法

(一)教材第104一106的内容及第108页练习二十一的第1、2题。

二教学目标

1.通过教学,使学生初步理解同分母分数相加减的算理,掌握同分母分数加、减法的计算法则。

2.培养学生数形结合的数学思想能力。提高学生迁移类推的能力和计算能力。

3.培养学生规范书写和仔细计算的良好习惯。

三重点难点

理解同分母分数加、减法的算理和计算方法。

四教具准备

多媒体课件。

教学过程

(一)导入

(1)的分数单位是(),它有()个这样的分数单位。

(2)()个是,里有()个。

(3)3个是(),是4个()。

2.谈话:我们在三年级已经学习过同分母分数的加、减法,今天这节课我们继续研究这个知识。

(二)教学实施

1.出示例1。

提问:观察图,你都知道了哪些数学信息?

(把一张饼平均分成8份,爸爸吃了张饼,妈妈吃了张饼,求爸爸和妈妈共吃了多少张饼。

提问:要求爸爸和妈妈共吃了多少张饼,怎样列式?为什么?

学生思考并口答:+,表示把两个分数合并起来,所以用加法计算。

提问:你能算出结果吗?怎样想的?

学生可以这样思考:是1个,是3个,合起来也就是。

提问:+的和是,为什么分母没变,分子是怎样得到”的?

(因为和的分母相同,也就是它们的分数单位相同,所以可以直接用两个分子相加,分母不变。)提问:你会写出计算过程吗?

板书:+===

利用多媒体课件演示上面的计算过程:

观察图可以看出结果是,也就是。注意:计算结果,能约分的要约成最简分数。

2.提问:通过解答上题,想一想分数加法的含义是什么?怎样计算同分母分数加法?

小结:分数加法的含义与整数加法相同,都是表示把两个数合并成一个数的运算。在计算同分母分数加法时,分母不变,只把分子相加。

3.出示例2。

请学生看题,试列式并计算。

请学生汇报计算过程:—===

加法交换律教案 篇8

一 、创设情景,激发兴趣

在本课的教学中,让学生感觉和自已的小伙伴一起学习,创设一种轻松、愉悦的学习氛围。学生对于美也有感觉,有他们自己独特的想法,他们很了不起,老师要多创设情境,引导他们去发现。可见课堂气氛影响着学生的学习情绪,创设良好的学习氛围犹为重要。

二、趣味游戏,让学生轻松愉快地自学

低年级学生活泼好动,注意力易集中也易分散。我以游戏的方式进行教学,符合学生的需求及年龄特点。

让学生具有很好的评价能力,同时能看出大部分学生能发自内心地欣赏他人,但由于在课堂有宽松的氛围,学生谁想说就说,在学生个人展示的过程,每个学生都很想表现自己,树立学习自信心。

小组合作读这一环节给学生充分展示自我的机会,同时培养了学生的竞争意识,,又可让学生体验到把数学学习应用到生活的乐趣。

小组同学在合作的过程中,能当好小老师及监督员的角色,公正地为小组成员判断其做题是否准确。游戏的方式进行教学,符合学生的需求及年龄特点。订正,形成生生互动的学习局面。

三、拓展学生的思维,让学生学会提问

通过本节课的教学,不仅能培养学生搜集材料的能力、开阔学生的视野,还能让学生在活动中体会参与的乐趣,同时也让学生感受到大海的美丽、富饶,加深对课文的理解。课堂上交流,让学生体会自己动手动脑获得成功后的快乐,并给学生提供说话的机会,提高了学生的口语交际能力。

学生在问大海问题时,说得精彩纷呈,兴趣盎然。这制造了课堂的热源效应,打通了课堂的壁垒,将学习活动立体化,我认为提出一个问题往往比解决一个问题更为重要,学生的知识面不宽,对任何事物都有有很强的求知欲,同样他们对大海充满好奇,想揭开大海神秘的面纱,在向大海提问中,学生提出了各式各样的.问题。

四、 学习过程中,培养学生良好的学习习惯

授之于鱼,不如授之于渔。教育不只是教给学生知识,更重要的是培养学生的学法习惯。问一问,你是怎样学会的。既巩固基础,又初步放手让学生自学。

不足:在学生自主学习的过程中,走进学生中间,了解到学生自己各自喜欢的学习方式都很有特色,发现学生在学习的过程中,有的同学对于知识早就会了,可在做的过程中,却没有做对,个别同学好的习惯还未正确形成。

加法交换律教案 篇9

教学目标

1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力 ,培养学生的符号感。

3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点

理解加法的运算律。

教学难点

概括加法的运算律,尝试用字母表示。

教学过程

一、教师适当引导,进入新知。

二、教学加法交律。

1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。

板书算式。

2、比较这两道算式有什么不同?

3、得数相同的算式我们可以用等号把它们连成等式。

4、举例:你能再说出几个这样的.等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。

5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。

6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母

学生思考,充分发表自己意见,教师给予肯定。

7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:

引出:加法交换律(板书)

8、小练习:填数

三、教学加法结合律。

1、过渡:刚才我们一起动脑,有了很多发现,大家真不简单。现在我们再来解决一个问题,看看会有哪些收获?课件出示

2、列式解答,利用题意追问算式含义,并相机加括号表示先算。还可能先算什么?说算式含义

3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。

4、出示书上题目,说一说,算一算。

5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。

6、你能不能再举几个例子?学生举例。

7、教师小结,引出:加法结合律(板书)。如果用a、b、c分别表示这三个加数,加法结合律可以表示成?

8、小练习:填数。

四、总结新知,组织练习。

1、刚才我们学习了加法交换律和加法结合律,它们都是运用在加法中的规律。师总结。

2、课后练习:

(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。

(2)比较体会运算律的作用,知道凑整百。

(3)凑整百小练习。

加法交换律教案 篇10

教学目标

1、知识与技能:①结合具体的情境,引导学生认识和理解结合律的含义。

2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。

3、情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②培养学生观察,比较,抽象,概括的初步思维能力。

教学重点

认识和理解加法结合律的含义。

教学难点

引导学生抽象,概括加法结合律。

教学用具

多媒体课件。

教学过程

一、自主学习

(一)出示自学提纲

自学提纲(P29页例2并完成自学提纲问题,将不会的'问题做标注)

1、根据例2情境图中信息列出算式。

2、用你喜欢的方法尝试计算

3、同桌交流自己的算法

4、教师板书出学生的算式及答案

88+104+96 88+(104+96)

=192+96 =88+200

=288 =288

5、对比上面的两道算式,你发现了什么?用自己的话说一说。

(二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

(三)自学检测

1、填空

387+425=( )+ 387 525+( )=137+ 525

300+600=( )+( ) ( )+65=( )+35

2、连线

56+68 150+(25+75)

150+25+75 50+B

B+50 68+56

A+B+100 A+(B+100 )

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

(引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

(二)师生互探

1、解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题,并让学生解决。

(2)教师引导学生解决学生还遗留的问题。

(3)如何用字母表示加法交换律和结合律?

(4)用字母表示这些运算定律有什么优点?

2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

四、达标训练(1--3题必做,4题选做,5题思考题)

1、根据加法结合律填空题。

(1)78+25+22 =78 +( )+25

(2)376+175+25=376 +( + )

2、连线。

147+(72+28) A+(B+100 )

A+B+100 147+72+28

3、简便计算下面各题。

52+27+73 285+15+77+23

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

五、堂清检测

(一)出示检测题

1、根椐加法的运算定律填空

(1)450+320=( )+ 450 65+95=95+( )

(2)( )+ 100 =100+150 250+( )=125+250

(3)78+25+22 =(78 + )+( )

(4)495+125+75=495 +( + )

2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。

(1)A + ( 30+9 )=A+ 30+9

(2)15+ ( 7+B )= (15 + 7 )+B

(3)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

3、连线。

87+22+78 (79+83)+17

498+125+75 498+(125+75)

(138+136)+162 87+(22+78 )

79+(83+17) 138+136+162

4、简便计算。

98+72+28 215+85+73+27

(二)堂清反馈:

作业布置

加法交换律教案 篇11

[教材简解]

《加法交换律和加法结合律》是小学数学第七册第六单元第1课时的内容,这是学生第一次接触运算定律,对于加法交换律的内容,从知识的层面上看,学生学习、理解、运用起来比较容易。而且在以往的学习过程中也已经渗透,让学生积累了一定的感性认识。学习加法的运算定律,为以后学习用字母表示数打下初步基础,同时也为简便运算打下基础。

[目标预设]

1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,结合具体实例,理解并掌握加法的交换律和结合律,会运用加法交换律进行加法验算.

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3、让学生在数学学习过程中获得探究的乐趣和成功地喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

4、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

[重点、难点]

1、让学生在探索中经历运算律的发现过程。

2、理解不同算式间的相等关系,发现规律,概括运算律。

[设计理念]

1、尊重儿童的认知规律,注重新旧知识的联系,引导学生在自主、合作、探究中巩固旧知识,发现新知识,掌握新方法。

2、以学生的“最近发展区”为向导,精心设计课堂教学策略,由浅入深,由易到难,循序渐进,预设出合理的教学流程与思维坡度。

3、本着真实有效的宗旨,让课堂焕发生活的活力,让每个孩子在民主、平等的课堂中得到不同的发展。并注重教师与学生对话,学生与学生对话,在对话中加强情感交流,使得课堂真正成为师生互动、心灵对话的舞台,从而让教师与学生都获取丰富的,积极的情感体验,进一步增强学生学习数学的兴趣。

[设计思路]

1、展示生活题材的数学例题,唤起学生对旧知的回忆,从而初步感受规律。

2、充分感知,让学生在具体的数学活动中观察,比较、不断地思考与建构。得出规律,并能运用规律。

3、帮助学生反思学习过程,并总结数学思想与方法,并让学生尝试,通过小组合作学习,让学生相互启发,相互补充,完成新知识的学习。进一步培养学生的自主探究意识。

4、总结归纳。通过对一节课学习的回顾,让学生谈谈收获,尤其是在数学的思想与方法上做出评价。

[教学过程]

一、创设情境,激趣导入

1、出示高斯小学的故事:1+2+3+4+5+6……+97+98+99+100=?

2、引入新课:高斯为什么能快速的找到答案,计算加法时是不是有什么运算规律呢?我们今天就一起来探索这个问题。

板书:加法运算规律

二、自主探索,寻找规律(加法交换律)

(一)出示情境图

四年级的同学们在开展跳绳和踢毽子的活动,从图中你获得了那些数学信息呢?根据这些数学信息,你能提出用加法计算的数学问题吗?(多指名说)

(二)解决问题,探究规律

1、出示问题:

(1)跳绳的有多少人?

(2)女生共有多少人?

(3)参加活动的一共有多少人?

2、师生研究解决第一个问题,揭示加法交换律。

(1)指名口头列式:28+17;还可以怎样列式?17+28;说说各算式表示的意思。

(2)这两个式子相等吗?为什么?(计算结果相等)(都是求跳绳的有多少人)那我们就可以用“=”把它们连接起来。教师板书:28+17=17+28,指名读算式。

(3)解答:女生共有多少人?板书等式:17+23=23+17

(4)仔细观察这两组等式左右两边的算式,思考:什么变了?什么没变?你有什么想法?(两个数的位置变了,数据、运算符号、结果没有变)

(5)这只是猜想,这种猜想在其他加法运算中也存在吗?你还能举几个像这样的例子吗?(指名说,教师板书。)这样的例子写的完吗?

(6)仔细观察这些等式,你有什么发现?能找出它们共同的规律吗?用自己的话说一说。全班交流。

(7)师:刚才老师用省略号把无数个这样的等式藏了起来,你还能用自己喜欢的方式比如字母、符号、文字等方式把这个规律简明的表示出来吗?试试看。

交流介绍:数学中一般用字母来表示:a+b=b+a,这里的a可以表示任意一个加数,b可以表示任意的另一个加数。这也是我们刚才通过观察、猜想、验证所得到的结论。这个规律叫加法交换律.这是我们今天要学习的第一个运算律。(板书课题)

3、其实加法交换律对于我们并不陌生,回顾一下,我们以前学习什么知识时也用了加法交换律?想一想加法是怎样验算的?

4、巩固练习,完成自主练习单(一)

自主练习单(一)

1、根据加法交换律填空。

23+35=35+()a+12=12+()

23+()=178+()()+98=()+56()+()=()+()

2、计算下面各题,并用加法交换律进行验算。

加法交换律教案 篇12

教学目标

1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力 ,培养学生的符号感。

3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点

理解加法的运算律。

教学难点

概括加法的运算律,尝试用字母表示。

教学过程

一、教师适当引导,进入新知。

二、教学加法交换律。

1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。

板书算式。

2、比较这两道算式有什么不同?

3、得数相同的算式我们可以用等号把它们连成等式。

4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的?核实是否相等。

5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。

6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母

学生思考,充分发表自己意见,教师给予肯定。

7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:

引出:加法交换律(板书)

8、小练习:填数

三、教学加法结合律。

1、过渡:刚才我们一起动脑,有了很多发现,大家真不简单。现在我们再来解决一个问题,看看会有哪些收获?课件出示

2、列式解答,利用题意追问算式含义,并相机加括号表示先算。还可能先算什么?说算式含义

3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。

4、出示书上题目,说一说,算一算。

5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。

6、你能不能再举几个例子?学生举例。

7、教师小结,引出:加法结合律(板书)。如果用a、b、c分别表示这三个加数,加法结合律可以表示成?

8、小练习:填数。

四、总结新知,组织练习。

1、刚才我们学习了加法交换律和加法结合律,它们都是运用在加法中的规律。师总结。

2、课后练习:

(1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。

(2)比较体会运算律的作用,知道凑整百。

(3)凑整百小练习。

加法交换律教案 篇13

教学内容:

青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

教学目标:

1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2、在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3、让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4、初步形成独立思考、合作交流的意识和习惯。

教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

教学准备:

课件、投影仪、卡片

教学过程:

一、拟定导学提纲,自主预习

(一)创设情境

1、谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的`小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

学生观察汇报,生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

教师适时板书相应的信息条件。

2、你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

问题(1)黄河流域的面积是多少万平方千米?

问题(2)黄河全长多少千米?

(二)出示学习目标

同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

2、在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

(三)出示自学指导

为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

(自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:

(1)怎样解答同学们提出的问题?哪种方法简单?

(2)什么是加法的结合律?怎样用字母式表示?

(3)什么是加法交换律?怎样用字母式表示?

(5分钟后,比一比谁汇报得最清楚。)

(四)学生自学

师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

二、汇报交流,评价质疑

(一)调查

师:看完的同学请举手?

(二)全班汇报

1、问题一:黄河流域的面积是多少万平方千米?

学生在列式解答时,可能会出现两种情况:

(1)39+34+2和34+2+39

(2)(39+34)+2和39+(34+2)。

2、问题二:黄河全长多少千米?

学生可能出的情况:

(1)3470+1210+790和1210+790+3470

(2)(3470+1210)+790和3470+(1210+790)。

今天我们要学的知识就在这两组算式中。

(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

3、观察、比较、发现规律

(1)观察这些算式,你们发现了什么?

生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

例如:

(39+34)+2=39+(34+2)

(3470+1210)+790=3470+(1210+790)。

(2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

生汇报:

(35+63)+15=35+(63+15)

(325+82)+18=325+(82+18)…

(3)把你的发现告诉大家?(将学生的举例用实物投影展示)

(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

师指出这条规律叫做加法结合律。

(4)你能用你喜欢的方法表示这加法结合律吗?

学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

(设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

4、学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

(1)游戏:找朋友。

在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

加法交换律教案 篇14

课题一:

加法的意义和加法交换律

教学内容:

教科书第48—49页的内容,练习十一的第1—4题。

教学目的:

1、使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

2、使学生理解并掌握加法交换律。

教学重点:

加法的意义

教学难点:

加法交换律

教具准备:

小黑板

教学过程:

一、教学加法的意义

教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

1、加法的意义。

(1)教学例1。

教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

137千米357千米

北京天津济南

然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:

“加法是什么样的运算?”

在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

(2)做练习十一的第1题。

要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2.加法各部分的名称。

教师指着137+357=494,提问:

137和357在加法算式中叫什么数?(加数。)

它们相加得到的结果494叫什么?(和。)

然后教师联系的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

137+357=494

加数+加数=和

提问:

“我们上面做的加法,两个加数是什么样的数?”(自然数。)

“任何两个自然数相加得到的和都比加数怎样?”(大。)

“一个自然数和0相加得到的和怎样呢?”(还得原数。)

“你能举出一个自然数和0相加的几个例子吗?”

教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)

然后接着问:

“0和0相加会怎样?”(还得0。)

“人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)

二、教学加法交换律

教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

1、结合例1的两种解法,引导学生比较它们的特点。

提问:

“上面”的例1,求北京到济南的.铁路长是怎样列式计算的?”

“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137

然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)

引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。

2.再出两组算式,引导学生比较,加以概括。

提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?

教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。

教师板书出下面的算式:

18+1717+18

124+235235+124

让学生算一算,再提问:

“每组算式有什么关系?里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”

3.比较三个等工,归纳出一般规律。

引导学生归纳,突出以下几点:

(1)这三个等式中,每组算式有几个加数?(两个加数)

(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。

4.用字母表示加法交换律。

教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)

学生回答后,教师板书:a+b=b+a

说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。

接着教师提问:

“想一想我们在以前学过的哪些计算中用到了加法交换律?”

使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

5.做第48页的“做一做”。

第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

第2题,验算的竖式可以直接写在原始的右边。

三、巩固练习

做练习十一的第2—4题。

1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。

2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。

四、小结

教师:今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?