一起合同网

导航栏 ×

合同范本|一次函数教案(汇编十四篇)

发布时间:2024-03-08

一次函数教案(汇编十四篇)。

⬭ 一次函数教案 ⬭

一次函数教学过程设计

1. 准备工作

在教学开始前,教师应该对本课的教学内容进行详细的研究和准备,制定出科学合理的教学计划和教学步骤,以充分发挥教学效果。

2. 导入新知识

首先,教师应该利用学生先前学习的知识和现实生活中的例子,从简单到复杂地引导他们理解什么是一次函数,以及一次函数的特点和性质。例如,可以利用柿子树生长的例子来引导学生理解一次函数,利用图表和数学式子帮助学生理解一次函数 y = kx + b 的含义。

3. 理论讲授

接下来,教师应该详细讲解一次函数的定义、特点、性质和相关概念,为学生打下牢固的理论基础。教师可以使用多媒体课件、幻灯片、黑板等教具,给学生呈现多种多样的学习资源。

4. 课堂练习

在理论讲解之后,教师可以通过课堂练习来帮助学生熟悉一次函数的相关概念和运用方法。课堂练习的形式可以是个人练习、小组练习或者全班练习。

5. 拓展延伸

在课堂练习结束后,教师可以通过一些实际应用情境,以及更复杂的一次函数的应用案例来拓展学生的思维和知识,帮助他们更加深入地理解一次函数的概念和运用。

6. 总结反思

随着本课程的结束,教师应该适时地对本节课的教学内容进行总结。教师可以邀请学生分享他们在本课程中的学习心得和经验,或者给出一些总结性的问题来帮助学生更好地理解本课程内容。

7. 作业布置

最后,教师应该适时地布置与本课程相关的作业,以巩固学生对一次函数的掌握和运用能力。可以有多种形式的作业,例如奥数训练、实际连续性训练和动手设计等方式。

一次函数授课思路

1. 引入,以引导学生认识一次函数的基本概念。

利用学生已有的知识,以买柿子、车行路程等例子引导学生认识一次函数的基本概念,包括什么是一次函数,一次函数的定义,一次函数的图像等。

2. 讲解一次函数的解析式以及相应的性质。

讲解一次函数 y=kx+b 的含义和推导方式,重点讲解斜率 k 及截距 b 的意义及公式。

3. 制作一次函数教学素材,让学生调整解析式的参数。

通过制作一份一次函数教学素材,让学生自行调整函数的解析式中的参数,来理解不同参数对于函数图像的影响以及斜率和截距的作用。

4. 针对常见问题进行讲解。

对于学生在学习过程中常见的问题,例如“斜率 k 是什么?截距 b 又是什么?”,教师应当对其进行详细讲解,以确保学生对相关概念的掌握。

5. 轻松愉快,采用趣味互动的方式,确保学生掌握一次函数的图像和解析式作用。

采用小游戏形式或展示各种不同图像的形式来稳固巩固学生对一次函数的图像和解析式的掌握,确保他们从进一步了解一次函数的角度准确掌握相关知识。

6. 知识的拓展,扩展应用场景。

通过实际情境和特殊问题等方式,大力拓展一次函数的应用场景。例如,可以通过测量树木高度、车行荷载、股票测算等例子,开发学生学习乐趣,引导他们思考一次函数的实际应用。

7. 总结,并进行知识的自我总结。

针对一次函数的相关概念和知识点,对学生进行清晰的概括,以加深他们的理解和记忆。同时,鼓励学生自己互相交流并将所掌握的知识向他人展示,以提高整个班级的学习水平。

8. 推荐学生复习和强化训练,巩固所学知识。

鼓励学生在学习完相关知识后进行复习和强化训练,在这一过程中充分巩固所学知识,并全面提高自身做题和解决实际问题的能力。

⬭ 一次函数教案 ⬭

数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺,为此下文为大家整理了中考数学一次函数的作法及一次函数图形,希望能够帮助到大家。

1.作法与图形:通过如下3个步

(1)列表

(2)描点:一般取两个点,根据“两点确定一条直线”的道理;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的.关系。

4.k,b与函数图像所在象限:

y=kx时(即b等于0,y与x成正比,此时的图像是是一条经过原点的直线)

当k>三象限,y随x的增大而增大;

当k<四象限,y随x的增大而减小。<>

y=kx+b(k,b为常数,k≠0)时:

当 k>0,b>0, 这时此函数的图象经过一,二,三象限。

当 k>0,b<0, 这时此函数的图象经过一,三,四象限。

当 k<0 b="">0, 这时此函数的图象经过一,二,四象限。

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当b>三象限;

当b<四象限。<>

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>三象限,不会通过二、四象限。当k<四象限,不会通过一、三象限。<>

5.特殊位置关系

当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等.

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1.

⬭ 一次函数教案 ⬭

数学一次函数教案



一、教学目标:


1. 理解一次函数的基本概念,能够分辨一次函数的图象。


2. 掌握一次函数的性质,能够准确地表示一次函数的解析式。


3. 学会利用一次函数模型解决实际问题。


4. 培养学生的数学思维和创新意识,提高学生的数学素养。



二、教学重点:


1. 了解一次函数的基本概念和性质。


2. 掌握一次函数的图象和解析式的表示方法。



三、教学难点:


1. 掌握一次函数图象和解析式之间的转化方法。


2. 学会将实际问题转化为一次函数模型进行求解。



四、教学过程:



1. 热身导入(5分钟)


教师出示一道与一次函数相关的实际问题:小明在一家商场买了一件T恤衫,原价120元,现在打8折出售,问小明应付多少钱。鼓励学生思考,快速解答。



2. 概念讲解(15分钟)


教师以板书形式呈现一次函数的定义:如果一个函数的解析式为y = ax + b (其中a和b是常数,并且a ≠ 0),那么它就是一次函数。然后,教师对一次函数的基本概念进行讲解,包括自变量、因变量、解析式和函数图象等。



3. 性质探究(20分钟)


教师通过问题引导学生自主发现一次函数的性质。例如:一次函数的图象必定是一条直线,当自变量为0时,函数值为常数b,当自变量每增加1时,函数值增加a。



4. 图象绘制(20分钟)


教师给出一些一次函数的解析式,如y = 2x + 1,y = -3x + 4,引导学生绘制对应的函数图象,并让学生探讨函数图象与函数解析式的联系和特点。



5. 实际问题解决(20分钟)


教师提供一些与生活实际问题相关的一次函数模型,如某电影院票价与购票人数的关系,某商场日销售额与顾客数量的关系等,鼓励学生运用一次函数模型解决这些实际问题。



6. 拓展应用(10分钟)


教师出示一些挑战性的扩展问题,例如:如何通过两点确定一次函数的解析式?如何通过一次函数图象推断函数的解析式?需要学生灵活运用一次函数的概念和性质,进行推理和解决问题。



7. 小结归纳(5分钟)


教师对本节课的重点内容进行归纳总结,回顾本节课所学的一次函数的基本概念和性质,以及如何利用一次函数模型解决实际问题。



五、课后作业:


1. 完成课堂练习册上与一次函数相关的习题。


2. 思考并总结自己在学习一次函数过程中的收获和困惑。



六、教学反思:


本节课通过引导学生自主思考,培养了学生的数学思维和探究能力。通过实际问题的引入,培养了学生将数学知识应用到实际问题解决的能力。但是在实际问题解决环节,有些学生仍存在困惑,需要更多的实践和指导。下节课将加强实践环节的引导和讲解,帮助学生更好地掌握一次函数的应用。

⬭ 一次函数教案 ⬭

一、教材分析

1、地位和作用

这一节内容是初中数学新教材八年级上册第十四章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。

2、活动目标

①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。

②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。

③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。

④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。

总的来讲,希望达到张孝达对我们教育工作者的'要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。

3、教学重点

(1).理解一元一次不等式与一次函数的转化关系及本质联系

(2).掌握用图象求解不等式的方法.

教学难点:图象法求解不等式中自变量取值范围的确定.

二、学情分析

八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

三、学法分析

1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

四、教法分析

由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:

⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。

⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。

教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。

1、“动”———学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。

2、“探”———引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。

3、“乐”———本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。

4、“渗”———在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。

⬭ 一次函数教案 ⬭

一次函数是学生在学习了正比例函数、反比例函数等知识基础上进行学习的,因此学生对一次函数比较熟悉了,所以,本教学设计注意以旧引新,通过复习,让学生讨论、试做,发挥学生的主体性,掌握一次函数的概念、图象性质以及实际应用。巩固练习中,从基本练习、例题精讲一直到巩固练习,设计均有层次,有坡度。

这是一节章节复习课,虽然课程容量大,内容又较抽象,但采用了先进的多媒体辅助教学,使本课教学的知识概念变得具体、生动、可信。

本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力。

本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力。

不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。

⬭ 一次函数教案 ⬭

我们小组的.观察点是教师是否关注学生,是否根据学生的认知基础引导学生自主构建知识体系。观察维度是教学环节设计如何提高学生的数形结合能力和解决实际问题的能力。总的来说,这节课教学环节时间分配较合理,教师引导及时恰当。教师教学思路清晰,教学重点突出,教师由浅入深、轻松愉悦地完成了教学目标。教师亲切的表情、流畅的语言、课件的精心准备等等方面都为学生的引领提供了一个轻松和谐的学习环境。课堂环节设计,教师仔细引导学生通过图象识图辩图,掌握信息,体会分析自变量和因变量的潜在规律,根据了解到的信息,解决提出的问题,提高了学生的数形结合能力。

具体教学过程中,有以下几个环节值得商议:

(1)在教学过程中,学生的主体地位没有充分展示出来,对于问题的生成,最好是教师引导学生去发现问题,提出问题,给每个学生充分的讲话机会,让他们大胆讲出自己的问题,大胆地参与探索和交流,彼此分享各自的观点和灵感,这样才可以调动学生的自主学习积极性。而不是教师牵着学生走,扼杀了学生的思维。

(2)缺少对学生动手能力的培养。缺少鼓励性评价性语言。通过交流,让学生之间互评,可以充分交流、碰撞,提高学习的主动性,积极性,参与性和创造性,是一种体验式的学习。

(3)小组合作探究再增加一个问题环节效果更好。对于例2的讲解,教师应更加强小组合作的模式,通过小组内探讨发现,找到问题,培养学生数形结合的能力和语言表达能力。

分析建议:

课前整体设计是一体的,但在课堂巩固练习环节时间偏短,可适当在自主探究上再缩短时间,如让学生根据图象口答问题,可直接回答,节省时间。

⬭ 一次函数教案 ⬭

一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。

先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。

练习之后我备课时又有一个性质要介绍,由于时间的'关系,没有讲解,就下课了!

反思:

1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。

2、本节课讲到第三个性质。

3、练习题要精而且少,难易适中。

4、注意课前准备,上课注意语言。

⬭ 一次函数教案 ⬭

数学一次函数教案



【导语】:一次函数是初中数学的重要内容之一,它是后续高中数学和大学数学的基础。因此,掌握一次函数的知识对学生来说至关重要。本教案旨在通过合理安排教学内容和方式,帮助学生全面理解一次函数的概念、性质和应用,提高他们的数学学习能力和解决实际问题的能力。



【教学目标】:


1. 掌握一次函数的定义和性质;


2. 熟练运用一次函数的相关公式和运算方式;


3. 提高通过建立和解决一次函数模型解决实际问题的能力。



【教学内容】:


1. 一次函数的定义和性质;


2. 一次函数的图像和性质;


3. 一次函数的斜率和截距;


4. 一次函数的解析式和其它表示形式;


5. 一次函数的运算和应用。



【教学步骤】:



一、导入新知识(10分钟):


1. 调查:请学生回答一次函数的定义是什么?它有哪些性质?


2. 引导学生思考:一次函数的图像如何确定?与它的性质有什么关系?



二、讲解一次函数的定义和性质(15分钟):


1. 通过数学定义引入一次函数的概念;


2. 介绍一次函数的性质:自变量和因变量呈线性关系,函数图像为一条直线。



三、探究一次函数的图像和性质(20分钟):


1. 使用计算机或幻灯片演示一次函数的图像和性质;


2. 探究一次函数的图像与斜率、截距的关系;


3. 设计一些练习题,让学生通过计算和绘图验证一次函数的性质。



四、讲解一次函数的斜率和截距(15分钟):


1. 引入一次函数的斜率的概念:斜率表示函数图像的倾斜程度;


2. 介绍一次函数的截距的概念:截距表示函数图像与坐标轴的交点。



五、解析式和其他表示形式(10分钟):


1. 通过实例讲解一次函数的解析式的写法和意义;


2. 介绍一次函数的斜截式和一般式的表达形式。



六、一次函数的运算和应用(20分钟):


1. 通过例题演示一次函数的加减、乘除运算;


2. 引导学生思考一次函数的应用场景,并举例说明。



七、巩固练习和展示(10分钟):


1. 分组合作,设计一些练习题,让学生自主解答;


2. 请学生代表向全班展示解题过程和思路。



【教学评估】:


1. 通过学生的讨论和展示情况,评估他们对一次函数的定义和性质的掌握程度;


2. 观察学生在解答练习题和实际问题时的能力,评估他们对一次函数的应用能力。

⬭ 一次函数教案 ⬭

优点

1、教学目的明确,突出重点、基本完成教学任务。作业新颖,适中。

2、教态自然大方,语言、表情亲切,面部表情丰富。教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。

3、选题有趣味性、针对性强。选择贴近生活的中考题,并采用了灵活的形式组织教学,使整 个教学过程充满活力。

4、学生自主且自信。自主学习是建立在学生一定的知识基础上的'较高层次的学习活动,更是一种学习态度的体现。整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。

5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。

建议

1、进一步加强近几年我省相邻地区和课改地区中考试题研究。

2、立足教材,夯实基础,落实好基础知识,面向全体。

备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?

⬭ 一次函数教案 ⬭

教学目标:

1.经历一般规律的探索过程、发展学生的抽象概括思维能力

2.理解一次函数和正比例函数的概念,以及它们之间的关系,《一次函数》教案。能根据所给条件写出简单的一次函数表达式。

3.通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

教学重点:

1.一次函数、正比例函数的概念及关系。

2.会根据已知信息写出一次函数的表达式。

教学难点:

会根据已知信息写出一次函数的表达式。

教学方法:

引导学生自学法、互动学习法、启发讨论式。

教具准备:

多媒体课件(补充练习6.2A)

教学过程:

一、导入新课

上节课我们已学习过函数的概念,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。在现实生活中有许多问题都可以归结为函数问题。大家能不能举一些列子呢?

二、推进新课

复习函数的概念及方程,接下来我们要从最简单而重要的一种函数讲起,到底是什么样的函数请看P182引例和做一做

1、P182引例:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:

x/千克012345y/厘米33.544.555.5

(2)你能写出x与y之间的关系式吗?

分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

2、P182做一做

某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。

(1)完成下表:

汽车行驶路程x/千米050100150200300

油箱剩余油量y/升

你能写出x与y之间的关系吗?(y=100-0.18x或y=100-x)

3、一次函数,正比例函数的概念

上面的两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

小练:下列函数中,y是x的一次函数的是

①y=x-6;②y=;③y=;④y=7-x;⑤

4、例题讲解

P183例1:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?

①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)

[(1)y=60x,y是x的一次函数,也是x的正比例函数;

(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;

(3)y=50+2x,y是x的一次函数,但不是x的正比例函数]。

例2:当k=时,是一次函数

P183例3:我国现行个人工资、薪金税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税…如某人某月收入1960元,他应缴个人工资薪金所得税为(1960-800)×5%=18(元)

①当月收入大于1600元而又小于2100元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。

②某人某月收入为1760元,他应缴所得税多少元?

③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?

分析:对于③应要注意19.2是否在范围之内

(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);

(2)当x=1760时,y=0.05×(1760-1600)=8(元);

(3)当x=2100时,y=0.05×(1300-1600)=25(元),25 19.2,

因此本月工资少于2100元,设此人本月工资是x元,则0.05×(x-1600)=19.2,x=1984。

三、课堂练习

1、随堂练习

(1)解:y=2.2x,y是x的一次函数,也是x的正比例函数。

(2)解:y=100+8x,y是x有一次函数。

2、补充练习

课件显示6.2A

1、见下表:

x-2-1012…

y-5-2147…

根据上表写出y与x之间的关系式是:_,y是否为x一的次函数?y是否为x有正比例函数?

2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。

[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

四、课后小结

1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

五、课后作业

P186:1,2 MSN(中国)

⬭ 一次函数教案 ⬭

教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

根据学生状况,教学设计也应做出相应的调整。如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的'图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识,。在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如“随着x值的增大,y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

⬭ 一次函数教案 ⬭

本节课是九年级学生中考首轮复习中对一次函数的一节复习课,通过对一次函数基础知识的疏理,典型例题的讲解、变式训练的巩固、练习小结的归纳提炼及课后作业的拓展提升这一条主线,对一次函数的图形、性质、应用进行复习,让学生对一次函数有一个系统、直观的复习思路。

一、本节课的主要教学思路:

通过让学生自主完成表格的形式引导学生梳理一次函数的相关定义、图象、性质等基础知识,使学生初步建立一次函数的知识框架;再通过以题带知识点的方式针对重点知识的熟练运用能力进行夯实训练;通过变式练习解决学生在解题中出现的易错点;通过课堂小结培养学生归纳知识点、提炼方法的意识和能力;利用给对学生布置的课后作业训练学生运用课堂所学的知识、方法独立思考、解决问题的应用能力,并对学生的复习效果进行查漏补缺。

二、本节课教学过程中比较突出的方面:

1、始终以一次函数的图象与性质及应用为主线进行复习,课堂教学时重视学生对基础知识的理解和基本方法的指导,重点解决学生在平时学习和练习中的`难点和易错点,有针对性的进行复习讲解和训练。例如:在复习用待定系数法确定一次函数解析式时,教师首先明确针“确定一次函数的解析式”的实质就是确定y=kx+b中的常数k、b的值;其次是引出待定系数法并指明待定系数法的操作步骤;同时强调在运用和计算中如何避免可能出现的易错点及检验的方法。这样做到对一次函数中的易错点进行提前干预。

2、在本节课的设计中既注重夯实学生的基础知识和解决一次函数中常见问题所用的通性通法,也注意以旧引新,达到温故而知新的目的,例如:在复习一次函数y=kx+b的图象所经过的象限时,通过知识点的回顾和具体题目的训练,巩固了学生对该知识点的掌握,在此基础上让学生讨论k、b的符号与一次函数图象所过象限之间的关系,归纳总结如何根据k、b的符号准确、快速的确定图象所经过的象限及如何根据图象所过的象限确定k、b的符号的方法,使学生对一次函数的图象与性质有更深入的认识,并逐步学会总结知识之间的联系,提炼规律,概括、灵活掌握所学知识。

3、本节复习课实行“低起点、细指导、多训练、精点播、快反馈、勤归纳”的策略,对基本练习题、例题、变式练习题的设计注意题目之间的层次和坡度,同时针对自己所带班级中一些学生数学基础较差且缺乏学习积极性的现状,在上课时多叫学生回答问题,多安排学生间相互讨论,注重激发全体学生学习数学的自信心和兴趣,加强对学生解题的准确性及表达的规范性上加以指导。

4、本节课的教学方法主要有讲练结合,小组讨论,合作归纳等,教学中让学生积极主动参与知识的形成过程,主要渗透转化的数学思想方法、数形结合的思想方法等,有意识地把思维空间留给学生,把学习主动权还给学生,使无味的复习课变得活跃一些,增强了学习气氛。例如:在进行知识点梳理时,以表格为一次函数知识体系的载体呈现,通过让学生完成表格促进学生自己主动联想回顾,进而建立一次函数的知识框架,变被动为主动学习;在完成表格中的“图象及其性质”环节中,让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。

三、本节课中有待改进的地方:

1、在一次函数应用的例题及练习题的讲解训练中,发现大多数学生对于简单题型能自己解答,而一部分学生对综合性题目或文字较长、条件较多的题目有些无从下手,反应出思维不灵活,理论与实际相联系的能力不足。因此在课前课前对各个环节、题型及不同层次的学生作充分、细致地研究。

2、由于学生学习一次函数到中考第一轮复习间隔的时间较长,学生对所学知识回生,教师对学生存在的问题和易错点预设不足,课堂时间显得比较紧张,在一次函数应用的复习时比较仓促。因此在以后复习课的教学中应综合考虑学生的知识、能力、易错点、所复习知识的时间等各方面情况,做好预设及准备工作。

总之,在今后的教学实践中还要不断反思自己教学中的得失,吸取教训,完善不足,不断积累经验,使不同学生得到不同发展。

⬭ 一次函数教案 ⬭

数学一次函数教案



主题:一次函数的基本概念和应用范围



篇一:一次函数的定义、图像和性质



一、教学目标


1. 了解一次函数的基本定义及其表示形式。


2. 掌握一次函数的图像特征和性质。


3. 能够利用一次函数解决实际问题。



二、教学重点


1. 一次函数的定义及其表示形式。


2. 一次函数的图像特征和性质。



三、教学难点


1. 一次函数的图像特征和性质的应用。


2. 实际问题的建模等。



四、教学过程


1. 导入新知


让学生观察一些实际问题的图像,引导学生思考这些问题与一次函数的关系。



2. 新知呈现


简要介绍一次函数的定义及其表示形式,并通过图像展示一次函数的特征,包括直线、斜率和截距等。



3. 案例分析


举例说明如何根据题目给出的条件,建立一次函数方程,并计算问题的解。



4. 个案解读


让学生结合实际问题,选择合适的一次函数模型,并解答相关问题。



5. 练习巩固


提供一些实际问题,让学生通过建立一次函数模型,解答问题。


(例题1:某商店每天卖出的商品数量与商品价格的关系是一次函数关系,当商品价格为20元时,每天卖出30件商品;当商品价格为30元时,每天卖出20件商品。问当商品价格为40元时,每天能卖出多少件商品?


解题思路:设商品价格为x元,每天卖出数量为y件,则根据题意得到两个点(20, 30) 和(30, 20)。根据两点式建立一次函数方程,求解x=40时的y值。)



六、拓展延伸


让学生进一步观察一次函数的性质,如斜率为正,则函数递增;斜率为负,则函数递减等。



七、归纳总结


总结一次函数的基本概念和性质。



八、评价反思


以小组或个人形式,让学生互相评价,并反思自己的学习过程。



篇二:一次函数的应用



一、教学目标


1. 掌握一次函数在实际问题中的应用方法。


2. 培养学生应用一次函数解决问题的能力。



二、教学重点


1. 一次函数在实际问题中的应用方法。


2. 学生能够熟练应用一次函数解决实际问题。



三、教学难点


1. 如何根据实际问题建立一次函数方程。


2. 如何利用一次函数解决实际问题。



四、教学过程


1. 导入新知


通过一个实际问题引出本节课的主题,并与学生讨论问题的解决方法。



2. 新知呈现


简要介绍一次函数在实际问题中的应用方法,并通过实际问题的解决过程进行演示。



3. 案例分析


举例说明如何应用一次函数解决实际问题,并引导学生进行思考和讨论。



4. 拓展延伸


提供一些复杂的实际问题,让学生自行分析和解决,并与同学进行交流和讨论。



5. 练习巩固


提供一些实际问题,要求学生独立解答,并进行答案的订正和解题思路的讨论。



六、归纳总结


总结一次函数在实际问题中的应用方法,并让学生归纳并总结自己解题过程中的经验。



七、评价反思


以小组或个人形式,让学生互相评价,并反思自己的解题过程和方法。



以上为参考范文,你可以根据自己实际情况进行修改和完善。

⬭ 一次函数教案 ⬭

一、教材分析

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

二、学情分析

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

三、目标分析

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的.意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).

(A)4 (B)5 (C)6 (D)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

六、教学反思

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

文章来源:https://www.hc179.com/hetongfanben/165225.html