一起合同网

导航栏 ×

解一元一次方程教案(推荐20篇)

发布时间:2021-05-17

解一元一次方程教案(推荐20篇)。

▶️ 解一元一次方程教案 ◀️

教学目标

1、了解方程的概念和一元一次方程的概念;

2、知道什么是解方程,会检验某个值是不是方程的解;

3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

教学重点

1、一元一次方程的概念及方程的解;

2、能验证一个数是否是一个方程的解。

教学难点

寻找问题中的等量关系,列出方程。

教学过程

一、情景诱导

同学们:世界上最大的动物是蓝鲸,一头蓝鲸重124t,比一头大象体重的25倍少1t,你能计算出这头大象的体重吗?

如果设大象的体重为x t,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

二、自学指导

学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

附:自学提纲: 1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

2、什么是一元一次方程?请举出1—2个例子。

3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

5、什么是解方程?

三、展示归纳

1、请有问题的同学逐个回答自学提纲中的问题,生说师写;

2、发动学生进行评价、补充、完善;

3、教师根据展示情况进行必要的讲解和强调。

四、变式练习

1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

附:变式练习

1、下列各式中,哪些是一元一次方程?

(1) 5x=0; (2) 1+3x ; (3) x2=4+x ; (4) x+y=5 ; (5)3m+2=1-m ; (6)x+2>1

(7) 《3.1.1一元一次方程》教学设计(修改稿和原稿) =1

2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。

3、已知关于X的方程2X 《3.1.1一元一次方程》教学设计(修改稿和原稿) +3=0为一元一次方程,求k的'值。

4、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是

5、设某数为x,根据题意列出方程,不必求解:

(1)某数比它的2倍小3;

(2)某数与5的差比它的2倍少11;

(3)把某数增加它的10%后恰为80.

6、若x=1是方程kx-1=0的解,则k= .

五、课堂小结

通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。

六、布置作业

课本83页习题3.1 第1题。

▶️ 解一元一次方程教案 ◀️

本节课内容选自人教版七上3.2.2章节的《解一元一次方程》,学生之前已经学习了用合并同类项的方法来解一元一次方程,这种方程的特点是含x的项全部在左边,常数项全部在右边。今天要学习的方程类型是两边都有x和常数项,通过移项的方法化归到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。

我是从复习旧知识开始,合并同类项一节解方程都是之前学过的知识,为本节课作铺垫,再引出课本上的“分书”问题,应用题本身对学生来说,理解上有点难度,讲解其中的数量关系不是本节课的重点,所以我避重就轻地给了学生分析提示,通过填空的形式,找出数量关系,进而列出方程。

列出方程后,发现方程两边都有x和常数项,这个方程怎么解?从而引出本节课的学习内容:怎样解此类方程。方程出示后,通过学生观察,怎样把它变为我们之前的方程,也就是含x的项全部要在左边,常数项在右边。学生回答右边的4x要去掉,根据等式性质1,两边要同时减去4x才成立。左边常数项20用同样的方法去掉,通过方框图一步步演示方程的变化,最后成为3x-4x=-25-20,变为之前学过的方程类型。

通过原方程、新方程的比较(其中移项的数用不同颜色表示出来),发现变形后相当于把4x从右边移到左边变为-4x,20从左边移到右边变为-20,进而揭示什么是移项,在移项中强调要变号,没有移动的项是不要变号的,再让学生思考移项的作用:把它变为我们学过的合并同类项的方程。

学习了原理之后,把例题做完,板示解题步骤,特别是每一步的依据,进而给学生总结出移项解方程的三步:移项、合并同类项、系数化为1。

练习反馈环节,让学生自己练习一道解方程,明确各步骤,下面分别是移项正误判断、解方程、应用题,分层次让学生掌握移项法则以及解方程,最后再解决实际问题。

本节课主要存在的问题有:

1、对学生的实际情况了解不够,学生已经知道了移项变号的知识,那么怎样在认识的基础上再来讲授该知识,我有点困惑,还是接学生的话,通过学生来挖掘“移项”的原理。

2、语言不够简练,教师分析得多,学生的参与讨论性不高,发表看法机会少,限制了学生的语言表达能力和数学思维的锻炼。

3、课堂学生练习环节有问题,其中男生板演了一道题,以为简单就过了,实际在后面发现错了,导致教学进入到应用题部分,再回过头来纠错,这是课堂教学中的大忌。点评作业时,应该让学生多说是怎么做的,说出各步骤,使得学生真正掌握移项解一元一次方程的方法。在教学媒体允许的情况下,应该使用实物投影对学生作业进行点评,可以清晰地展示作业中的典型错误,从而更好地了解学生的掌握情况。

“移项”教学反思

本节课的教学内容是移项,学生此前已经学习了等式性质和利用合并同类项解一元一次方程的相关知识。

这一次的备课作了一些新的尝试,在认真看完教参之后,花了一天的时间重新思考:这一课要讲的是什么内容?要解决什么问题?用什么样的方法?有了一个大致的框架之后,才开始动笔写教案,把教学目标定位《七年级数学上册《解一元一次方程——移项》教学反思(2篇)》/p><

为:会运用移项把方程转化成x=a的形式;理解移项的依据;能尝试利用“表示同一个量的两个式子相等”来建立适当的方程。

课后,有这样几点感想:

1、对课中的问题(应用题)讲解比较粗浅,学生并没有达到理解、掌握相应的方法的程度。

2、对移项的讲解不够深入,应该用不同的颜色来突出某一项移动前后的变化,而且,以后可以尝试用以下的方法帮助学生分辨是否进行了移项,是否需要变号,即,以等号(=)为界线,移项则相当于“越界”,凡是“越界”的都需要变号,没有“越界”的则不需要变号。

3x+20=4x-25

3x-4x=-25-20

界线

我觉得应该能找到一种效果更好的方法帮助学生理解移项。

3、课上展示学生作业的机会太少了。这一点,毫无疑问是我课前准备不周到,原来是想请学生写在黑板上的,上课时才发现,黑板根本不够用。在以后的课前准备中,要把展示学生作业作为重要的一个内容来加以考虑。

4、关于板书,课前一直在想,板书是突出解方程的过程还是突出运用一元一次方程解应用题的过程,最终在上课的时候选择了前者,理由是,运用一元一次方程解应用题的过程不应该作为本节课教学的中点来加以强调,在之前的教学中已经强调过了。但是后来还是觉得有些不妥,毕竟,在学生的作业过程中,完整的解题过程是相当重要的,而对于聋生来说,不断的重复有助于学生更好地记住这些细节。

5、在后来的交流中,发现自己准备的练习没有形成层层递进的梯度,没有为学生设计一些有关移项的专项练习,这在以后的备课中要引起重视,即在教学过程中,应该设计一些帮助学生突破难点的专项练习。使课堂练习更有层次感,能满足更多学生的需求。

6、还有一点也是在课前比较纠结的,即课中小结与末尾的小结的关系,舍不下课中的小结,这对接下来的`练习是有一定的帮助的,但是如果过分强调课中小结,会有一种本末倒置的感觉。最后选择了需求,放弃了感觉,同时也忽视了必要的修饰,其实,课中小结确实是必要的,但是可以简单一些,而末尾小结的色彩可以重一些,也算是给这堂课画上一个句号吧,这一点在备课的时候没有仔细斟酌,颇为遗憾。

▶️ 解一元一次方程教案 ◀️

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的`工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

▶️ 解一元一次方程教案 ◀️

本节课的数学安排是学习用去括号解一元一次方程,并初步根据实际问题列方程,本节课的重难点是学生能自己看问题找相等关系列出方程,并能正确解出方程。

教学成功之处:1.复习巩固去括号法则有的放矢,恰到好处,能降低本节课的难度,如去括号①3x-7(x-1)= ②3-2(x+3)= ;本节学习解一元一次方程的重点是去括号,方法同以往一样。

②经历方程解决实际问题的过程,体会方程是现实世界的有效数学模型。

不足之处:教学过程中利用背景材料创设情境列一元一次方程来解实际问题。

片断:如某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

师:主要是引导生分析:设上半年每月平均用电X度,则上半年共用电 ,若下半年平均每月用电 度,则下半年共用电 度。

生:回答后列出方程;这个片断应该放手让生自己讨论,自己得出等量关系。最好让一两个学生上去讲解:你是怎么理解题意、怎么分析的,从而得出:

上半年每月用电量×上半年总月数+下半年每月用电量×下半年总月数=150000课后我反复思考,这块内容教师过于包办,得出结论有些勉强应该放手让学生讨论交流后得出一元一次方程,然后在解一元一次方程并作答,师只需加以强调。

总之这节课后我认为自己讲的过于详细,应当再精讲少讲,让学生尝试自己学习新知识,自己再运用新知识解决实际问题

总之,本节课后我认识到了要提高教育教学的有效值,教师备课时要深入教材,理解教材的编排意图,挖掘出本课的核心知识及思想方法,活用教材,据学科特点和实际学情精心设计出符合学生发展的教学内容。上课时要走出教材,注重教学的基本技能和技巧,引导、指导学生尝试自己学习新知识,再运用新知识解决问题。在实施的过程中还要随时关注全体学生的发展,真真正正做到以人为本,以学生的发展为本。

教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将悉心耕耘,积极进取,博采众长,提高自己,让我教的每一个孩子更加优秀 。

▶️ 解一元一次方程教案 ◀️

由数学文化中的实际问题导入,一个数,它的三分之二,它的二分之一,它的全部,它们总共是33,求这个数。

师引导学生分析,设元,列方程,解方程,作答。

重点分析了如何去分母。可是大部分的学生不会用短除法找最小公倍数,于是我又给学生补讲短除法。

讲完短除法,再讲去分母的方法。

去分母,就是根据等式的性质2,在方程两边分别乘以最小公倍数后约去分母。学生们在去分母过程中,常踩着几个坑:1,漏乘;2,分子是多项式时忘记加括号。

虽然我一直强调它们,可是初学者都常踩着它们。

我想,虽然强调过,但毕竞这些内容有些抽象,所以学生不易习得。

最终只有通过再针对训练:精讲一个例子,再让生进行只去分母不移项的解一元一次方程的训练,这样更具有针对性,效果更好。

▶️ 解一元一次方程教案 ◀️

一、教学目标

【知识与技能】

理解一元一次方程及其相关概念,能根据实际问题中的等量关系列出一元一次方程。

【过程与方法】

通过探究一元一次方程的过程,提升观察与总结概括的能力。

【情感、态度与价值观】

在学习活动中获得成功的体验,提升对数学的兴趣。

二、教学重难点

【重点】一元一次方程及其相关概念,从实际问题到一元一次方程的分析过程。

【难点】分析实际问题中的等量关系列一元一次方程。

三、教学过程

(一)导入新课

出示问题:(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

通过提问如何解决引导学生想到算术法和方程法。

(二)讲解新知

再出示两个问题:

(2)一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

组织同桌合作列方程,并说明等号两边的意义及列式依据。

在学生回答的基础上,教师板书:

组织同桌两人一组,观察并讨论三个方程的共同特点。提示学生从式的角度思考,关注项、次数、字母种类等。

通过师生问答形式引出只有一个未知数未知数次数都是1等号两边都是整式的特征后,教师讲解一元一次方程的定义。注意解释元的含义。

组织学生总结从上述实际问题到一元一次方程的分析过程,归纳得到:

▶️ 解一元一次方程教案 ◀️

20xx年学初开学已经三个礼拜了,我和同学们共同学习了第七章一元一次方程的教学内容。在解一元一次方程时,同学们出现了各种各样的问题,现就同学们在解一元一次方程时时常容易犯的错误进行列举一下。

有的同学在移项时容易忘记改变符号,导致结果错误;有的同学在合并同类项时出项这样那样的错误;有的同学在解带有分母的一元一次方程时去分母显得有困难,尤其是各项中有一项为单独一个数字1时去分母往往就把这项忘记乘以公分母了;还有的同学在遇到具有百分之几的时候显得手足无措,不知道把百分号化成小数来计算,尤其是遇到x%时就更蒙了。

针对这些问题我除了自己出了一些相关的习题让同学们加强训练并讲解之外,还组织每个小组的组长有针对性的给同学们出题并随时指导,采取兵练兵的方案,这样同学们对解一元一次方程有了很大的进步。同学们由怕解方程慢慢的开始喜欢解方程了,同学们显得很有自信心,对此我感觉非常欣慰。

在今后的教学中我会随时搜集同学们容易出现问题的地方,强化讲解,对症下药,让同学们都能越学越有乐趣,越学越有自信。当然让每一个同学都能学的好,学的快,还不是一个简单的问题,我会继续努力!

▶️ 解一元一次方程教案 ◀️

今天我讲了一节《含有字母系数的一元一次方程》本来在备课的时候准备的很充足,考虑到了学生在课堂上将出现的各种情况,开始讲的时候很顺利,学生的状态和他们的发言都很令我满意,但是在讲完例题,引导学生做名校密题、做练习时出现了问题,学生的做题速度与准确度与我的预想有一点差距。当时我有点着急,一看时间所剩不多,没有对学生在做题过程中所出现的问题进行及时解决,而留到自习再逐一解决。

我在备课的时候是这样设计的:首先对以前所学知识进行回顾,让学生在很自然的状态下从一元一次方程过度到含有字母系数的一元一次方程。其次,给出两道例题,让学生通过做例题和练习并从中总结出书上给的注意“方程两边同乘或除以的式子不能为零。”再次,引导全体同学做名校密题上的练习,并逐渐加深难度。最后,根据学生情况,分层次留作业。

对于本节课我的感受就是,当有人听课的时候太注重课堂的流程往往达不到预想的效果,与其讲究一些讲课的技巧,不如塌塌实实的讲一节课,真正做到把知识传授给学生才是讲课的根本。

▶️ 解一元一次方程教案 ◀️

去括号的根据是去括号法则与乘法分配律。去括号易犯的错误是括号前面是负号,而去括号时忘记变号;一个数乘以一个多项式,去括号时漏乘多项式的后面各项;在学生的练习与测试中,发现错误最多的是一个负数乘以一个多项式时,没有处理好符号问题。

错因分析:

学生出现上述错误的原因是对括号前的符号的属性定位不当,普遍把它看作是减号,运用乘法分配律进行乘法计算去括号时,缺乏整体思想,从而所得的乘积漏添上括号而出错。

解决策略:(1)把括号前的“-”号进行定性:是减号还是负数的符号。在教学过程中曾尝试让学生通过先把所得的乘积漏添上括号后再去括号来解决。

但效果不明显,后来改变了处理方法,要求学生把括号前的符号看成是数的符号,括号前是负数,运用乘法分配律时把整个负数乘进去,效果比前一种方法学生容易记住。

(2)加强练习,使学生对这方面的认识得到强化。

▶️ 解一元一次方程教案 ◀️

教学目标

1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。

2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。

教学重、难点

重点:把方程转化为标准形式。

难点:解方程的应用。

教学过程

一激情引趣,导入新课

1解方程:9x+3=8+8x

2(1)上面解方程的过程中,每一步的依据是什么?

(2)什么叫移项?移项要注意什么?

(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?

二合作交流,探究新知

1动脑筋:

某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的.和是乙班参加的人数的3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?

观察你解方程的过程,原方程做了哪些变形?

形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

2训练

(1)解方程:①11x-2=8x-8,②

(2)下列方程求解正确的是()

A-2x=3,解得:x=,B解得:x=

C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

三应用迁移,巩固提高

1方程的转化

例1已知x=-2是方程的解,求m的值。

例2若方程2x+a=,与方程的解相同,求a的值。

2实践应用

例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?

例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊

也给我,我恰好有一百只羊”,请问这群羊有多少只?

四冲刺奥赛

例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()

A2B–2CD不存在

例6解方程:3x+=4

例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?

五课堂练习,巩固提高

P1121

六反思小结,拓展提高

1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?

▶️ 解一元一次方程教案 ◀️

今天的数学课我给同学们讲了追及相遇问题,之所以选择这个主题,是因为追及相遇问题是生活中很常见的数学问题,而且完美体现了数形结合的数学思想。在教会他们直接求解的方法之外,我还想通过初步引入未知量,一元一次方程的概念,来拓宽孩子们的视野,发散孩子们的思维,让孩子们对待同一个问题拥有更多的思路。

在备课过程中,我遇到一些麻烦,因为看到追及相遇问题就想列方程去解答,利用直接法去计算让我很头大,在不断搜例题看答案解析的过程,我开始渐渐明白直接法中蕴含的道理。这节数学课对我和孩子们来说是一个双向学习,共同成长的过程,带给孩子们方程思想的同时,孩子们的角度也为我增加了一种新思路。

在讲解追及相遇问题时,我通过生活中有趣的的情景模拟来举例题,比如军队追及敌人,小朋友找彼此玩相遇等等,我感觉这样会使同学们更加有画面感,从而更加容易去理解题意,进而解决问题。我边描述题干边在黑板上画出对应的简图,同学们兴致勃勃,跟我一起念起题干来。

同学们原来接触过追及相遇问题,而他们只是记住了公式,当我问他们为什么相遇时间等于总路程除以速度和,为什么两个人相向而行速度就要求和呢?大家沉默了。在遇到这种类似的问题,孩子们只是机械的套用公式,并不理解其中的奥义。通过讲解参考系,孩子们对这个公式有了更立体的理解。

在用直接法解答完几个例题之后,我回到第一个例题,告诉孩子们还有更简单的方法去求,孩子们热情高涨,都急于知道究竟是什么方法。在跟他们讲解不知道的量可用参数来表示,然后利用假设的参数列出关系式就可以解出答案之后,我发现孩子们并不是都能理解这种解法,孩子们第一次接触未知量和方程,思想的转变并不是那样容易。成功就是将简单的事不断重复,就像高中老师经常说的那句话"重复是学习最有效的工具"。孩子们说不是很懂,我便再讲一遍,只第一道例题,我用方程法就讲了三遍,结合提问,在讲完第三遍之后有更多的孩子表示能看懂关系式,回应积极。

其他例题我引导孩子们用方程法去考虑,很多孩子都积极举手起来分享自己列的关系式,看到孩子们小小的心里埋下方程这个奇妙的种子,我心中的喜悦无法言喻。

▶️ 解一元一次方程教案 ◀️

一元一次方程的应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课研究的是方案问题,是学生最难解决的一类应用题,教材上只安排了一道例题,我们根据教学的需要对教材进行了适当的加工和处理,搭了一些台阶,增加了几道例题,由浅入深,层层递进。分析寻找方案问题中的等量关系,之后讨论不同种情况的存在性是本节课的难点,为此在教学过程中我设计了分别提问,不同种情况的收费,找出相等,学生在这样的思路的引导下,逐渐掌握解决方案问题的方法。

反思本节课的教学,有很多地方需要改进:

1.在本节课的教学中,我们始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。在上课的过程中由于太注重启发引导,却忽视了学生的活动和交流,没有放手让学生自己去探究、去发现,使他们没有机会进行自主探索。在以后的教学中要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我们深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

2.在本节课的教学中我以师生共同探究为主线进行了教学,课堂上大部分学生积极参与,表现出学习的欲望和热情,但还有一部分同学学习的积极性不高,可能是课堂对他缺乏吸引力,这是值得我深思的,通过本节课,我对怎样激发学生的学习兴趣,让学生的思维动起来有了更深刻的体会。在今后的教学中,我要努力给学生充分的思考交流的时间,鼓励学生提出有价值的问题,抓住他们思维的闪光点。

有这样一句话给我触动很大“中国的学生在课堂上研究老师的问题,带着标准答案走出课堂;美国的学生在课堂上能够提出自己的问题,他们带着新的问题走出课堂。”希望我的学生和我自己,在课程改革的过程中,也能化被动为主动,不断地提出问题,研究问题,解决问题,一路思索,一路前进。

▶️ 解一元一次方程教案 ◀️

第一节:从问题到方程

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0.

第二节:解一元一次方程

一元一次方程解法的一般步骤:

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a≠0)的形式;

第三节:用一元一次方程解决问题

(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系.

(2)找出等量关系:找出能够表示本题含义的相等关系.

(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.

(4)解方程:解所列的方程,求出未知数的值.

(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.

▶️ 解一元一次方程教案 ◀️

学习目标

1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解

2. 会用一元一次方程解决工程问题

重点难点

重点:建立一 元一次方程解决 实际问题

难点:探究实际问题与一元一次方程的关系

教学流程

师生活动 时间

复备标注

一、 复习:

解下列方程:

1.9-3y=5y+5

2.

二、新授

例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

分析:这里可以把总工作量看做1。思考

人均效率(一个人做1小时完成的工作量)为 。

由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

这项工作分两 段完成,两段完成的.工作量之和为 。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得

.

去分母, 得 4x+8(x+2)=-1701

去括号,得 4x+8x+16=40

移项及合并同类项,得

12x=24

系数化为1,得 X=-243.

所以 -3x=729

9x=-2187.

答:这三个数是-243,729,-2187。

师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

例4 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一 方 式二

月租费 30元/月 0

本地通话费 0.30元/月 0.40元/分

(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

解:(1)

方式一 方式二

200分 90元 80元

350分 135元 140元

( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

0.4t=30+0.3t

移项,得 0. 4t -0.3t =30

合并同类项,得 0.1t=30

系数化为1,得 t=300

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.

归纳:用一元一次方程分析和解决实际问题的基本过程如下

三、巩固练习:94页9、10

四、达标测试 :《名校》55页1.2.3.

五、课堂小结:

(1) 这节 课我有哪些收获?

(2) 我应该注意什么问题?

六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答.

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

学生独立解方程方程的解是不是应用题的解

教师强调解决 问题的分析思路

学生读题,分析表格中的信息

教 师根据学生的分析再做补充

学生思考问题

教师根据学生的解答,进行规范分析和解答

▶️ 解一元一次方程教案 ◀️

用移项法解方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:

①含未知数的项不知道如何处理;

②移项没有变号;

③没移动的项也改变了符号;(划线的两种情况出现最多);

针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;

第一,解题中部分同学仍采用原来的等式性质进行;

第二,移项时符号还是一个大问题;

所以总的说来,这课堂效率不高,没有完成基本的'课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

▶️ 解一元一次方程教案 ◀️

一、目标:

知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。

过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

能力背景:能比较熟练地用等式的性质来解一元一次方程。

一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的 变形叫做移项。

看谁做得又快又准确!千万不要忘记移项要变号。

2x=5x-21 x- 3=4-

(1). 10x+1=9 (2) 2—3x =4-2x;

1.今天学习了什么?有什么新的简便的写法?

2.要注意什么?

3. 解方程的 一般步骤是什么?

(2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。

▶️ 解一元一次方程教案 ◀️

初一上册的第三章整章都以利用一元一次方程解决生活中的实际问题。应用题一向是学生感到困惑的问题,因为它要求学生要有一定的阅读理解能力,一定的逻辑分析能力以及一定的生活经验。这一章涉及的内容很多,有体积等量关系、打折销售、教育储蓄、行程问题(相遇、追击)一题存在两个等量关系等,含量很大。如果每个知识点出一两个题练习来达到复习的目的话,学生也能勉强接受,但是这样的课堂呆板无味。这确实让我好一番动脑。

根据初中学生的年龄特点,为了激发学生兴趣,使课堂教学鲜活生动,我决定尝试运用多媒体信息技术,充分地调动学生的多种感官,促进学生多元智能均衡发展。

从学生的学情和年龄段喜爱出发,初一学生年龄还小,都对故事性强的内容和比较直观的事务感兴趣。

这些体会让我更明白每一堂数学课都要从学生的学情出发,尽可能的利用多媒体创设贴近学生生活的教学情景,同时要重视主动与学生交流,及时了解每堂课的学生反馈,不断改善、提高自己的教学能力,引导学生学数学、做数学、想数学。

我深深感受到我课堂角色已经发生了明显变化,从单纯的注重知识传授转为比较关注学生的学习方式、学习愿望和学习能力的培养。面对新课程,我感到不断更新教育观念的必要性。除了多读理论知识外,还要珍惜学校提供的听评课、学习多媒体知识的机会。全方位包装自己,在新课程改革中,和学生共同成长。

我渴望在课堂上“经常发现学生的闪光点”,渴望“被难住”,渴望“常常有惊喜”。我会虚心和老教师们一起体味新课改,探讨教学方法,为新课改注入新鲜的血液。

▶️ 解一元一次方程教案 ◀️

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的`工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

▶️ 解一元一次方程教案 ◀️

课    题解一元一次方程(1)

课型新授课

教学目标1.了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程。2. 经历数值代入计算的过程,领会方程的解和解方程的意义。知道求方程的解就是将方程变形为x=a的形式。3. 强调检验的重要性,养成检验反思的好习惯。

教学重点归纳等式的性质;利用性质解方程。

教学难点比较方程的解和解方程的异同;

教具准备天平,砝码,物体

教学过程

教  学  内  容

教师活动内容、方式

学生活动方式设计意图一。 创设情境,引入新课:1.做一做:填表:

x

1

2

3

4

5

2x+1

2.根据表格回答问题:(1)当x=       时,方程2 x+1=5两边相等。(2)你知道能使方程2 x+1=5两边相等的x是多少吗?我们把能使方程左右两边相等的未知数的值叫做方程的解,如x=5是方程2 x+1=5的解,求方程的解的过程叫做解方程。求方程2 x+1=5中x=5的过程就是解方程 3.试一试:分别把0、1、2、3、4代入方程,哪个值能使方程两边相等。(1)2 x-1=5             (2)3x-2=4x-3你知道方程2 x-1=5和3x-2=4x-3吗? 4.那么我们怎样求方程的解呢?引入课题。二。自主探究,合作讨论:. 1.用天平做演示实验,让学生探索得出:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以看到天平依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡,2.由实验联想到等式的几种变形。学生填表学生练习巩固方程的解的概念采用枚举这一合情推理的方法找出满足方程的未知数的值,得出方程的解和解方程的概念。 通过实验提高学生的感性认识

教师活动内容、方式

学生活动方式

设计意图⑴2x+1=5→2x=5-1,3x=3+2x→3x-2x=3;⑵2x=4→ x=4÷2., =2→x=2×33.学生归纳等式的性质:性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式。三。数学运用:1..出示例1 在括号内填上适当的数或整式,使所得结果仍是等式。 ⑴如果3x=-x+4,那么3x+(    )=4⑵如果x-1= x,那么(  )(x-1)=x2.思考:比较方程的解和解方程的异同?(方程的解是使方程成立的未知数的值;解方程是求方程解的过程,是一个等价变形过程,而求方程的解就是将方程变形为x=a的形式)出示例2.解下列方程:(1)x+5=2;(2)-2x=4.引导学生自己尝试运用等式的基本性质解方程,说清楚每一步的依据,交流解题方法。教师提供正确的解题格式。强调检验方法及检验的必要性。3.思维拓展:课本p96练一练2. 四。巩固与练习:课本p96练一练1。五。回顾反思:(1)小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求。(2)解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯。(3)注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形。五。作业    (见作业纸) 逐步引导启发学生归纳等式的性质学生说出变形的依据交流解题方法。师生共同小结等式的性质比较抽象,教学时不必在理论上作过多的展开,

▶️ 解一元一次方程教案 ◀️

一、设计

1、复习回顾:什么叫一元一次方程?解方程就是最终将方程转化为什么形式?

2、让学生尝试解这两个方程:(1)x+2x+4x=140;(2)x+4=-6

3、学生做好后先分析第一个方程,左边做了什么变形?这样做起什么作用?再分析第二个方程,根据等式性质1由x+4=-6变形为x=-6-4发现数据怎么变化的?从而归纳出利用移项、合并同类项等方法解一元一次方程。

4、学生练习巩固、反馈。

5、最后小结收获与运用合并、移项的注意点。

二、反思

1、本堂课是在利用等式的性质的基础上归纳解一元一次方程的常规步骤,使解题更趋合理、简洁。因此在设计复习题时有意为后面做铺垫,一题多用。

2、合并同类项起到化简的作用,把含有未知数x的项合并成一项,从而达到把方程转化为ax=b的形式,其中a、b是常数;移项使方程中含未知数x的项归到方程的同一边(一般在左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为ax=b的形式,其中a、b是常数;再将系数化为1,从而得到方程的解x=m,m为常数。整个过程体现了化归的数学思想。

3、在练习的过程中始终让学生铭记要移项首先要变号(变号移项),并知道它的依据,加深对变号的理解。

4、本堂课如果前面能更紧一些,最后有足够的时间让学生自主小结就更好了。

文章来源:https://www.hc179.com/hetongfanben/135847.html