合同范本|高一物理必修一知识点总结(热门二十篇)_高一物理必修一知识点总结
发布时间:2024-01-05高一物理必修一知识点总结(热门二十篇)。
✦ 高一物理必修一知识点总结
1、物理公式在确定物理量数量关系的同时,也确定了物理量的单位关系。基本单位就是根据物理量运算中的实际需要而选定的少数几个物理量单位;根据物理公式和基本单位确立的其它物理量的单位叫做导出单位。
2、在物理力学中,选定长度、质量和时间的单位作为基本单位,与其它的导出单位一起组成了力学单位制。选用不同的基本单位,可以组成不同的力学单位制,其中最常用的基本单位是长度为米(m),质量为千克(kg),时间为秒(s),由此还可得到其它的导出单位,它们一起组成了力学的国际单位制。
✦ 高一物理必修一知识点总结
⑴恒力的功:根据公式W=Fscosα,当00≤a<900时,cosα>0,W>0,表示力对物体做正功;当α=900时,cosα=0,W=0,表示力的方向与位移的方向垂直,力不做功;当900<α<1800时,cosα<0,W<0,表示力对物体做负功,或者说物体克服力做了功。
(2)合外力的功:等于各个力对物体做功的代数和,即:W合=W1+W2+W3+……
(3)用动能定理W=ΔEk或功能关系求功。功是能量转化的量度。做功过程一定伴随能量的转化,并且做多少功就有多少能量发生转化。
✦ 高一物理必修一知识点总结
精耕细作的古代农业:
1、从刀耕火种到铁犁牛耕的农业耕作方式的变革:
(2)我国农业进入了“耜耕”或“石器锄耕”阶段的标志:松土工具耒耜的出现和普遍使用。
(3)商周时期,出现青铜农具。春秋时期,小件铁农具问世。牛耕是我国农用动力上的一次革命。战国时,牛耕初步推广。此后,铁犁牛耕逐步成为中国传统农业的主要耕作方式。
2、我国古代农业经济的特点:
(1)小农经济以家庭为生产、生活单位,农业和家庭手工业相结合,生产主要是为满足自家基本生活的需要和交纳赋税,是一种自己自足的自然经济,小农经济精耕细作,是中国封建社会农业生产的基本模式。
(3)中国封建社会发展缓慢和长期延续的重要原因:自然经济的牢固存在。
1.商朝的司母戊鼎世界稀有。
2.东汉杜诗发明水排,用水利鼓风冶铁。
3.魏晋南北朝发明灌钢法。
4.唐代制瓷形成南青北白两大系统。
5.宋代江西的景德镇,到元代发展为全国制瓷中心,明清时是全国的瓷都。
6.明朝在青花瓷的基础上,烧制出彩瓷;清代还发明了珐琅彩。
7.明清时苏州、杭州是着名的丝织业中心,使用花楼机机构复杂精密。
1、了解“市”的形成和发展:
(1)西汉:每个城市都设专供贸易的“市”与住宅区严格分开,长安城东西有市。设官员管理(市长或市令),按时开市闭市。
(2)隋唐:长安城有市和坊,市与坊用围墙隔开,白天定时开市闭市。
2、知道主要的商业城市和着名的商帮:
(5)隋唐黄河流域长安、洛阳;长江流域扬州、益州,成为繁华的商业城市;广州重要的外贸港口,政府设市舶使。
(8)明清:出现商帮。如,徽商、晋商(两者相同之处:都从经营盐业起家;商业活动都涉及金融领域(徽商经营典当业,晋商兴办票号);活动范围都涉及国外,都积累起巨额财富)
其目的:维护自然经济,确保赋役征派和地租征收,维护政治稳定,巩固封建统治。
积极作用:保护了农业生产和小农经济,促进农业经济发展;封建社会初期巩固新兴地主政权。
明清重农抑商的表现:农本商末的思想,专卖制度,关卡重税,歧视商人,庞大的官营手工业。
消极后果:强化自然经济,阻碍工商业发展,阻碍资本主义萌芽的发展。
(2)明代“海禁”是防倭寇之患,但并未禁止官方对外贸易;清代是因为对付东南沿海人民的抗清斗争。两者都是为维护封建统治秩序。
闭关锁国的后果:妨碍海外市场的开拓,抑制资本的原始积累,阻碍资本主义萌芽的滋长;使中国与世隔绝,没能及时学习西方先进的科学知识和生产技术以发展生产力,使中国逐渐落后于世界潮流。
✦ 高一物理必修一知识点总结
物体通过的路程与所用的时间之比叫做速度。
平均速度(与位移、时间间隔相对应)
物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。
v=s/t
瞬时速度(与位置时刻相对应)
瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。
速率≥速度
✦ 高一物理必修一知识点总结
1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2.物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
✦ 高一物理必修一知识点总结
曲线运动
1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2、物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(的方向与物体速度v的方向相同,则物体做直线运动;
(的方向与物体速度v的方向不同,则物体做曲线运动。
3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。分运动:
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
,竖直方向为y轴,正方向向下、
6、①水平分速度:②竖直分速度:③t秒末的合速度④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示
7、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8、描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
(周期T,频率:f=1/T
(角速度及周期之间的关系:
9、匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的.物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动万有引力定律及其应用
67×Nm2/kg2
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈这表示力F对物体做正功。如人用力推车前进时,人的推力F对车做正功。
(
解题思路:
①选取研究对象——物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8、功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
能量守恒定律及能量耗散
✦ 高一物理必修一知识点总结
(1) 形变:物体的形状或体积的改变,叫做形变。
说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。
②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。
(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。
说明:①弹力产生的条件:接触;弹性形变。
②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。
③弹力必须产生在同时形变的两物体间。
④弹力与弹性形变同时产生同时消失。
(3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。
几种典型的产生弹力的理想模型:
① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。
② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。
③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。
(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。
✦ 高一物理必修一知识点总结
时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。例如:第3s末、3s时、第4s初……均为时刻;3s内、第3s、第2s至第3s内……均为时间间隔。区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。
位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。
由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。
1.理解图象的含义:(1)x-t图象是描述位移随时间的变化规律。(2)v—t图象是描述速度随时间的变化规律。
2.了解图象斜率的含义:(1)x-t图象中,图线的斜率表示速度。(2)v—t图象中,图线的斜率表示加速度。
2高一必修一匀变速直线运动的研究一、匀变速直线运动的基本公式和推理
三个公式中的物理量只要知道任意三个,就可求出其余两个。利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同。解题时要有正方向的规定。
1.研究运动图象:
(1)从图象识别物体的运动性质。
(2)能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义。
(3)能认识图象的斜率(即图象与横轴夹角的正切值)的意义。
(4)能认识图象与坐标轴所围面积的物理意义。
(5)能说明图象上任一点的物理意义。
2.x-t图象和v—t图象的比较:如图所示是形状一样的图线在x-t图象和v—t图象中所代表的不同含义。
1.追及、相遇的特征:
追及的主要条件是:两个物体在追赶过程中处在同一位置。两物体恰能相遇的临界条件是两物体处在同一位置时,两物体的速度恰好相同。
2.解追及、相遇问题的思路:
(1)根据对两物体的运动过程分析,画出物体运动示意图。
(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中。
(3)由运动示意图找出两物体位移间的关联方程。
(4)联立方程求解。
3.分析追及、相遇问题时应注意的问题:
(1)抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。
(2)若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动。
4.解决追及、相遇问题的方法:
(2)物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解。
1.判断物体的运动性质:
(1)根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。
(2)由匀变速直线运动的推论△x=aT?,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。
(1)逐差法:a=[(x6+x5+x4)-(x3+x2+x1)]/9T?
(2)v—t图象法:利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a。
1、弹力的产生:
条件:(1)物体间是否直接接触。(2)接触处是否有相互挤压或拉伸。
2.弹力方向的判断:
弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
(1)压力的方向总是垂直于支持面指向被压的物体(受力物体)。
(2)支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。
(3)绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。
补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。
3.弹力的大小:
(1)弹簧的弹力满足胡克定律:F=kx。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。
(2)弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。
(2)静摩擦力不一定比滑动摩擦力小。
(3)静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向。
(4)摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力。
2.静摩擦力用二力平衡来求解,滑动摩擦力用公式F=μFn来求解。
3.静摩擦力存在及其方向的判断:
存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。
1.物体受力分析的方法:
3.受力分析时应注意的问题:
(1)分析物体受力时,只分析周围物体对研究对象所施加的力。
(2)受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力。
(3)如果一个力的方向难以确定,可用假设法分析。
(4)物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定。
(5)受力分析外部作用看整体,互相作用要隔离。
1.正交分解时建立坐标轴的原则:
(1)以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上。
(2)一般使所要求的力落在坐标轴上。
1.对牛顿第一定律的理解:
(1)揭示了物体不受外力作用时的运动规律。
(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关。
(3)肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因。
(4)牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例。
(5)当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律。
2.对牛顿第二定律的理解:
(1)揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性。
(2)牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态。
(3)加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度。
3.对牛顿第三定律的理解:
(1)力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力。
(2)指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同。
1.理想实验法。2.控制变量法。3.整体与隔离法。4.图解法。5.正交分解法。6.关于临界问题处理的基本方法是:根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件。
1.力、加速度、速度三者的关系知识点:
(1)物体所受合力的方向决定了其加速度的方向,合力与加速度的关系F=ma,合力只要不为零,无论速度是多大,加速度都不为零。
(2)合力与速度无必然联系,只有速度变化才与合力有必然联系。
(3)速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小。
2.关于轻绳、轻杆、轻弹簧问题的相关知识点:
(1)轻绳:①拉力的方向一定沿绳指向绳收缩的方向。②同一根绳上各处的拉力大小都相等。③认为受力形变极微,看做不可伸长。④弹力可做瞬时变化。
(2)轻杆:①作用力方向不一定沿杆的方向。②各处作用力的大小相等。③轻杆不能伸长或压缩。④轻杆受到的弹力方式有:拉力、压力。⑤弹力变化所需时间极短,可忽略不计。
(3)轻弹簧:①各处的弹力大小相等,方向与弹簧形变的方向相反。②弹力的大小遵循F=kx的关系。③弹簧的弹力不能发生突变。
3.物理关于超重和失重的问题相关知识点:
(1)物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力。
(2)物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重。
(3)物体出于完全失重状态时,物体与重力有关的现象全部消失:①与重力有关的一些仪器如天平、台秤等不能使用。②竖直上抛的物体再也回不到地面。③杯口向下时,杯中的水也不流出。
物理变化不一定会伴随着能量变化。物质的状态变化一般都会伴随着能量变化,物理变化中不一定存在能量变化,但是物质的化学变化过程一定伴随能量变化。
1物理变化概念:没有生成新物质的变化,物理变化只是物质在外形和状态方面发生了变化,与化学变化相对。
实质:保持物质化学性质的最小粒子本身不变,只是粒子之间的间隔运动发生了变化,没有生成新的物质。
2化学变化概念:化学变化是指相互接触的分子间发生原子或电子的转换或转移,生成新的分子并伴有能量的变化的过程,其实质是旧键的断裂和新键的生成。
实质:化学反应前后原子的种类、个数没有变化,仅仅是原子与原子之间的结合方式发生了改变,原子是化学变化的最小微粒。例如对于分子构成的物质来说,就是原子重新组合成新物质的分子。物质的化学性质需要通过物质发生化学变化才能表现出来,因此可以利用使物质发生化学反应的方法来研究物质的化学性质,制取新的物质。
✦ 高一物理必修一知识点总结
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vo2/2g(抛出点算起)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的环绕速度和最小发射速度均为7.9km/s。
1.重力G=mg(方向竖直向下,g=9.8m/
2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车行驶速度(vmax=P额/f)
9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=
1.60×10-19J;(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA[或Rx>(RARV)1/2]
选用电路条件Rx<
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。
1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损?=(P/U)2R;(P损?:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
✦ 高一物理必修一知识点总结
初速度为零的匀变速直线运动以下推论也成立
(1) 设T为单位时间,则有
●瞬时速度与运动时间成正比,
●位移与运动时间的平方成正比
●连续相等的时间内的位移之比 (2)设S为单位位移,则有
●瞬时速度与位移的平方根成正比,
●运动时间与位移的平方根成正比,
●通过连续相等的位移所需的时间之比。
✦ 高一物理必修一知识点总结
速度变化的快慢加速度
1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值
a=(vt—v0)/t
2.a不由△v、t决定,而是由F、m决定。
3.变化量=末态量值—初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢
5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。
用图象描述直线运动
匀变速直线运动的位移图象
1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)
2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)
3.图象中两图线的交点表示两物体在这一时刻相遇。
匀变速
直线运动的速度图象
1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)
2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。
✦ 高一物理必修一知识点总结
人教版高一物理必修一知识点总结免费
大家的高一物理学的怎么样了?物理必修一里的知识点难的并不是十分的多,但是却是高中物理的基础。以下是小编准备的一些人教版高一物理必修一知识点总结,仅供参考。
【一】
一、曲线运动
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。二、运动的合成与分解
1、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:
分运动的独立性;
运动的等效性(合运动和分运动是等效替代关系,不能并存);
运动的等时性;
运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
2、怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,
(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.
【二】
名称:加速度
1.定义:速度的变化量Δv与发生这一变化所用时间Δt的比值。
2.公式:a=Δv/Δt
3.单位:m/s^2(米每二次方秒)
4.加速度是矢量,既有大小又有方向。加速度的大小等于单位时间内速度的增加量;加速度的方向与速度变化量ΔV方向始终相同。特别,在直线运动中,如果速度增加,加速度的方向与速度相同;如果速度减小,加速度的方向与速度相反。
5.物理意义:表示质点速度变化的快慢的物理量。
举例:假如两辆汽车开始静止,均匀地加速后,达到10m/s的速度,A车花了10s,而B车只用了5s。它们的速度都从0m/s变为10m/s,速度改变了10m/s。所以它们的速度变化量是一样的。但是很明显,B车变化得更快一样。我们用加速度来描述这个现象:B车的加速度(a=Δv/t,其中的Δv是速度变化量)>
加速度计构造的类型
A车的加速度。
显然,当速度变化量一样的时候,花时间较少的B车,加速度更大。也就说B车的启动性能相对A车好一些。因此,加速度是表示速度变化的快慢的物理量。
注意:
1.当物体的加速度保持大小和方向不变时,物体就做匀变速运动。如自由落体运动,平抛运动等。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运动。如竖直上抛运动。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运
2.加速度可由速度的变化和时间来计算,但决定加速度的因素是物体所受合力F
和物体的质量M。
3.加速度与速度无必然联系,加速度很大时,速度可以很小;速度很大时,加速度也可以很小。例如:炮弹在发射的瞬间,速度为0,加速度非常大;以高速直线匀速行驶的赛车,速度很大,但是由于是匀速行驶,速度的变化量是零,因此它的加速度为零。
4.加速度为零时,物体静止或做匀速直线运动(相对于同一参考系)。任何复杂的运动都可以看作是无数的匀速直线运动和匀加速运动的合成。
5.加速度因参考系(参照物)选取的不同而不同,一般取地面为参考系。
6.当运动的方向与加速度的方向之间的夹角小于90°时,即做加速运动,加速度是正数;反之则为负数。
特别地,当运动的方向与加速度的方向之间的夹角恰好等于90°时,物体既不加速也不减速,而是匀速率的运动。如匀速圆周运动。
7.力是物体产生加速度的原因,物体受到外力的作用就产生加速度,或者说力是物体速度变化的原因。说明当物体做加速运动(如自由落体运动)时,加速度为正值;当物体做减速运动(如竖直上抛运动)时,加速度为负值。
8.加速度的大小比较只比较其绝对值。物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.
向心加速度
向心加速度(匀速圆周运动中的加速度)的计算公式:
a=rω^2=v^2/r
说明:a就是向心加速度,推导过程并不简单,但可以说仍在高
科里奥利加速度
科里奥利加速度
中生理解范围内,这里略去了。r是圆周运动的半径,v是速度(特指线速度)。ω(就是欧姆的小写)是角速度。
这里有:v=ωr.
1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。
2.匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。
重力加速度
地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。
重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显着减小,此时不能认为g为常数
距离面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到最大。
由于g随纬度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665m/s^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80m/s^2。理论分析及精确实验都表明,随纬度增大,重力加速度g的数值逐渐增大。如:
赤道g=9.780m/s^2
广州g=9.788m/s^2
武汉g=9.794m/s^2
上海g=9.794m/s^2
东京g=9.798m/s^2
北京g=9.801m/s^2
纽约g=9.803m/s^2
莫斯科g=9.816m/s^2
北极地区g=9.832m/s^2
注:月球面的重力加速度约为1.62m/s^2,约为地球重力的六分之一。
匀加速直线动动的公式
1.匀加速直线运动的位移公式:
s=V0t+(at^2)/2=(vt^2-v0^2)/2a=(v0+vt)t/2
2.匀加速直线运动的速度公式:
vt=v0+at
3.匀加速直线运动的平均速度(也是中间时刻的瞬时速度):
v=(v0+vt)/2
其中v0为初速度,vt为t时刻的速度,又称末速度。
4.匀加速度直线运动的几个重要推论:
(1)V末^2-V初^2=2as(以初速度方向为正方向,匀加速直线运动,a取正值;匀减速直线运动,a取负值。)
(2)AB段中间时刻的即时速度:
Vt/2=(v初+v末)/2
(3)AB段位移中点的即时速度:
Vs/2=[(v末^2+v初^2)/2]^(1/2)
(4)初速为零的匀加速直线运动,在1s,2s,3s……ns内的位移之比为1^2:2^2:3^2……:n^2;(5)在第1s内,第2s内,第3s内……第ns内的位移之比为1:3:5……:(2n-1);
(6)在第1米内,第2米内,第3米内……第n米内的时间之比为1:2^(1/2):3^(1/2):……:n^(1/n)(7)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:△s=aT^2(a一匀变速直线运动的加速度T一每个时间间隔的时间)。
(8)竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
加速度-加速运动与减速运动
物体运动时,如果加速度不为零,则处于加速状态。若加速度大于零,则为正加速;若加速度小于零,则为负加速(即速度减至0后反向加速)。(提示:物理中的符号不同于数学中的符号,在+、-号只代表是的标量,在物理中+、-号部分代表单纯的标量,还有部分还代表的像方向啦什么的矢量)
V=v末—v初
加速度公式:a=△V/△t
加速度-曲线加速运动
在加速度保持不变的时候,物体也有可能做曲线运动。比如,当你把一个物体沿水平方向用力抛出时,你会发现,这个物体离开桌面以后,在空中划过一条曲线,落在了地上。物体在出手以后,受到的只有竖直向下的重力,因此加速度的方向和大小都不改变。但是物体由于惯性还在水平方向上以出手速度运动。这时,物体的速度方向与加速度方向就不在同一直线上了。物体就会往力的方向偏转,划过一条往地面方向偏转的曲线。
但是这个时候,由于重力大小不变,因此加速度大小也不变。物体仍然做的是匀加速运动,但不过是匀加速曲线运动。
加速度-小问题——加速度单位的来历
根据我们高中的课本描述,有加速度a=(Δv)/(Δt)=(v1-v2)/t,因为速度(v)的单位是m/s,时间(t)的单位是s,于是将m/s与s相除,得到的就是它的单位:m/s^2.
1、弄清高中物理过程建立清晰的物理情景。
因此做题前首先要弄清完整的物理过程,.倘若物理过程不清楚也就无法建立清晰的物理情景,我们更找不到解决问题的正确途径,如果我们通过审题,弄清了完整的高中物理过程,建立了清晰的物理情景,便会找到问题的入口。因此在做题之时,我们必须做到:过程不清不动笔。分析物理过程,首先,通过审题,弄清物理过程并找到各细节之间的联系;其次,要抓住本质剔除次要因素;第三,要注意捕捉关键句,挖掘隐含条件,对关键句可用笔作标记,注明隐含条件。
2、分析高中物理问题做图必不可少。
物理图象突出的特征是物理知识中不可缺少的一部分,它是化抽象为具体的巧手,平时常有这种情况:有些学生他们听老师讲物理思路基本上能跟上,但自己独立做作业时,往往无从下手。仔细分析和了解他们的学习情况后发现,他们听课时,忽视老师讲解的思路,喜欢记录解题步骤。不记老师的分析过程图,受力分析图等物理草图。因而解题时也就没有作图的习惯,当然这些学生遇到解题困难时,老师只要给他们画出物理情景图,思路大多豁然开朗,由此可见,高中物理的作图能与知识产生共振,从而提高思维的敏捷性和流畅行。
3、高中物理坚持题后总结。
当我们完成一道题后尤其是由在老师或同学的帮助下完成时,我们要把握”领会方法的最佳时机”。想一想:这道题的关键在哪里?重要的困难是什么?什么地方可以完成的更好一些?我为什么没有觉察到这一点?要看出这一点我必须具备哪些知识?应该从什么角度去考虑?这里有没有学习的诀窍可供下次遇到类似的问题用?良好的题感正是通过总结培养出来的,相反仅热忠于解题,就题论题结果就会食而不化,事倍功半。考试时许多题目似曾相识但有百思不知其解,由此可见,平时解题时,不能仅重视解题的数量和结果,更应重视高中物理题后深思多想。
一、单选题
1、关于力学单位制,下列说法正确的是
A.千克、米/秒、牛顿是导出单位
B.千克、米、牛顿是基本单位
C.在国际单位制中,质量的单位是g,也可以是kg
D.只有存国际单位制中,牛顿第二定律的表达式才是F=ma
2. 一物体m受到一个撞击力后,沿斜面向上滑动,在滑动过程中,物体m受到的力是下列说法中的哪一个:
A.
重力,沿斜面向上的冲力,斜面的支持力;
-
一起合同网(hC179.coM)编辑部群聊高频提及:
- 高一物理知识点总结 | 高一生物必修一知识点 | 高一生物必修一知识点总结 | 高一数学知识点 | 高一物理必修一知识点总结 | 高一物理必修一知识点总结
B.重力,沿斜面向上的冲力,沿斜面向下的滑动摩擦力;
C.重力,沿斜面向下的滑动摩擦力,斜面的支持力;
D.重力,沿斜面向上的冲力,沿斜面向下的滑动摩擦力,斜面的支持力.
3一辆拖拉机停在水平地面上.请在下列关于拖拉机和地面受力的叙述中选出正确的叙述:
A.地面受到了向下的弹力,是因为地面发生了弹性形变;拖拉机没有发生形变,所以拖拉机不受弹力;
B.地面受到了向下的弹力,是因为地面发生了弹性形变;拖拉机受到了向上的弹力,是因为拖拉机也发生了形变;
C.拖拉机受到向上的弹力,是因为地面发生了形变;地面受到向下的弹力,是因为拖拉机发生了形变;
D.以上说法都不正确.
4. 汽车以20 m/s的速度做匀速直线运动,刹车后做匀减速运动,加速度的大小为5 m/s,则刹车后6 s内汽车的位移是( )
A.30 m B.40 m C.10 m D.0 2
5.如图所示,一木块放在水平桌面上,受水平方向的推力F1和F2的作用,木块处于匀速直线运动状
态,F1=10N,F2=2N,若撤去F1 的瞬间,则木块受到合力F和摩擦力f的大小、方向是
A. F=0;f=2N,方向向右 B. F=10N,方向向左;f=8N,方向向右
C. F=10N,方向向左;f=8N,方向向左 D. F=0,f=0
6.一物体以恒定的加速度由静止开始下落,历时1s到达地面,落地时的速度为8m/s,则下列说法正确的是
A.开始下落时,物体离地面的高度为3.2m B.下落过程中的加速度为10m/s2
C.前一半时间内下落的高度为0.8m D.后一半时间内的平均速度为6m/s
7.如图所示是物体在某段作直线运动过程中的v-t图象,在tl和t2时刻的瞬时速度分别为vl和v2,
则物体由tl到t2运动的过程中
A.加速度不断增大 B.加速度不断减小
C.位移不断减小
8. 理想实验是科学研究中的一种重要方法,它把可靠事实和合理的推理相结合,可以深刻地揭示自然规律。以下实验中属于理想实验的是 ( )
A.平行四边形法则的科学探究 B.伽利略设想的对接光滑斜面实验 D.平均速度
C.用打点计时器测物体的加速度 D.利用刻度尺的落体运动,测定人的反应时间的小实验 9.如右图所示,用轻绳把一个小球悬挂在O点,用力F拉小球使悬线偏离竖直方向30°,小球处于静止状态,力F与竖直方向成θ角。要使F取最小值,θ角应是 ( ) A.30° B.60° C.90° D.0°
10. 一个质量为10kg的物体放在水平地面上,当受到一个水平推力F1=30N时,其加速度为1m/s2,当受到的水平推力变为F2=60N时,其加速度为: A. 6m/s2
B. 4m/s2
C. 3m/s2
D. 2m/s2
二、不定项选择题
11、如图所示,物体在F的作用下静止于斜面上,则物体A受力的个数可能是
A.2个 B.3个 C.4个 5个
12. 将重为50N的物体放在某直升电梯的地板上。该电梯在经过某一楼层地面前后运动过程中,物体受到电梯地板的支持力随时间变化的图象如图所示。由此可以判断: A. t=1s时刻电梯的加速度方向竖直向上 B. t=6s时刻电梯的加速度为零 C. t=8s时刻电梯处于失重状态 D. t=11s时刻电梯的加速度方向竖直向下
13.如图所示的速度—时间和位移—时间图像中给出了四条图线,关于它们的物理意义,下列描述正确的是
A.图线1、3都表示物体做曲线运动 B.s—t图线中t1时刻v1
C.v—t图线中0至t3时间内3和4平均速度相等 D.s—t图线中t2时刻表示2开始反向运动
14.一个质量为50 kg的人,站在竖直向上运动的升降机地板上,升降机加速度大小为2 m/s2,若g取10 m/s2,这时人对升降机地板的压力可能等于:
A.600 N B.
500 N
C.400 N D.300 N
15.一质点沿某一条直线运动时的速度—时间图象如图所示,则以下说法中正确的是
A.第1s末质点的位移和速度都改变方向 B.第2s末质点的位移改变方向
C.第4s末质点的位移为零 D.第3s末和第5s末质点的位置相同
三、实验题
16. 电火花计时器使用_______电源,电压为_______V。当电源的频率为50Hz时打点计时器每隔_________s打一个点,当交流电的频率小于50Hz时,仍按50Hz计算,则测量的速度的数值比真实的速度数值_______(填“偏大”“偏小”“不变”)
17.在 “探究小车速度随时间变化的规律”实验中得到的一条纸带,从O点开始每5个点取一个测量点,分别为A、B、C、D、E、F,各点间距如图: ① A、D两点的瞬时速度是:vA=______m/s, vD=______m/s,
② 在右边所示坐标中作出小车的v-t图象,根据图线求出加速度a=__________m/s2
③将图线延长与纵轴相交,交点的速度是________m/s,此速度的物理意义是______________________ 18、在“验证力的平行四边形定则”的实验中,其中的三个实验步骤是:
(1)在水平放置的木板上固定一张白纸,把橡皮条的一端固定在木板上,另一端拴两根细线,通过细线同时用两弹簧秤互成角度地拉橡皮条,使它与细线的结点到达某一位置 O 点,在白纸上记下 O 点和两弹簧秤的读数 F1和F2. (2)在纸上根据 F1和F2的大小,应用平行四边形定则作图求出合力 F . (3)只用一只弹簧秤通过细绳拉橡皮条,使它的伸长量与两弹簧秤拉时相同,记下此时弹簧秤的读数F'和细绳的方向. 以上三个步骤中均有错误或疏漏,请指出:
(1)中是______________________________________.
(2)中是_______________________________________.
(3)中是_____________________________________.
19一个实验小组在“探究弹力和弹簧伸长的关系”的实验中,使用两条不同的轻质弹簧a和b,得
到弹力与弹簧长度关系的图象如图实-2-7所示.下列表述正确的是 A.a的原长比b的长 B.a的劲度系数比b的大
C.a的劲度系数比b的小 D.测得的弹力与弹簧的长度成正比
20.两个相同的小车并排放在光滑水平桌面上,小车前端系上细线,线的另一端跨过定滑轮各挂一个小盘,盘里分别放有不同质量的砝码(图a).小车所受的水平拉力F的大小可以认为等于砝码(包括砝码盘)所受的重力大小.小车后端也系有细线,用一只夹子夹住两根细线(图b),控制两辆小车同时开始运动和结束运动. 由于两个小车初速度都是零,运动时间又相同,s=at/2,
即s∝a,只要测出两小车位移s之比就等于它们的加速度a之比。 实验结果是:
当小车质量相同时,加速度与拉力成_____________ ;
当拉力F相等时,加速度与质量成__________________ 。 实验中用砝码(包括砝码盘)所受的重力G=mg的大小作为小 车所受拉力F的大小,这样做会引起实验误差。为了减小这个
误差,G与小车所受重力Mg之间需要满足的关系是:___________ 。
四、计算题 21、有些航空母舰上装有帮助飞机起飞的弹射系统.已知某型号的战斗机在跑道上加速时可能产生的加速度为5.0m/s2,起飞速度为50m/s,如果要求该飞机滑行100m后起飞,问弹射系统必须使飞机具有多大的初速度?如果某舰上不装弹射系统,要求该种飞机仍能在此舰上正常起飞,问该舰身长至少应为多长.
2
22.如下图所示,A、B重力分别是GA=10N,GB=2N,α=60°,A、B处于静止状态。求物体A受到的摩擦力是多大?地面
给A的支持力是多大?
`
23、如图所示,物体的质量m=4kg,与水平地面间的动摩擦因数为μ=0.2,在倾角为37°,F=10N的恒力作用下,由静止开始加速运动,当t=5s时撤去F,(g=10m/s2,sin37°=0.6,cos37°=0.8)。求:
(1)物体做加速运动时的加速度a;
(2)撤去F后,物体还能滑行多长时间?
24一物体以5m/s的初速度沿倾角为37?的固定斜面上滑。已知物体与斜面间的动摩擦因数为0.5,设斜面足够长。(g=10m/s2,sin37?=0.6,cos37?=0.8)求:(1)物体上滑的位移;(2)物体回到出发点时的速度。
✦ 高一物理必修一知识点总结
1.曲线运动的位移:平面直角坐标系 通常设位移方向与x轴夹角为α
2.曲线运动的速度:
①质点在某一点的速度,沿曲线在这一点的切线方向
②速度在平面直角坐标系中可分解为水平速度Vx及竖直速度Vy,V2=Vx2+Vy2
3.曲线运动是变速运动(速度是矢量,方向或大小任一的改变都会造成速度的变化,曲线运动中,速度的方向一定改变)
4.物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上
✦ 高一物理必修一知识点总结
一.曲线运动
1.曲线运动的位移:平面直角坐标系 通常设位移方向与x轴夹角为α
2.曲线运动的速度:
①质点在某一点的速度,沿曲线在这一点的切线方向
②速度在平面直角坐标系中可分解为水平速度Vx及竖直速度Vy,V2=Vx2+Vy2
3.曲线运动是变速运动(速度是矢量,方向或大小任一的改变都会造成速度的变化,曲线运动中,速度的方向一定改变)
4.物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上
二.平抛运动(曲线运动特例)
1.定义:以一定的速度将物体抛出,如果物体只受重力的作用,这时的运动叫做抛体运动,抛体运动开始时的速度叫做初速度。如果初速度是沿水平方向的,这个运动叫做平抛运动
2.平抛运动的速度:①水平方向做匀速直线运动 初速度V0即为Vx一直保持不变
②竖直方向做自由落体运动 Vy=gt
③合速度:V2=Vx2+Vy2=V02+(gt)2 方向:与X轴的夹角为θ tanθ=Vy/V0=gt/V0
3.平抛运动的位移:①水平方向 X=V0t
②竖直方向y=1/2gt2 ③合位移 S2=x2+y2=(V0t)2+(1/2gt2 )2 方向:与X轴夹角为α tanα=y/x=V0t/?gt2=2V0/gt
三.圆周运动
1.线速度V:①圆周运动的快慢可以用物体通过的弧长与所用时间的比值来量度 该比值即为线速度 ②V=Δs/Δt 单位:m/s③匀速圆周运动:物体沿着圆周运动,并且线速度的大小处处相等(tips:方向时时改变)
2.角速度ω:①物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,即角速度 ② 公式 ω=Δθ/Δt (角度使用弧度制) ω的单位是rad/s
3.转速r:物体单位时间转过的圈数 单位:转每秒或转每分
4.周期T:做匀速圆周运动的物体,转过一周所用的时间 单位:秒S
5.关系式:V=ωr(r为半径) ω=2π/T
6.向心加速度①定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫做向心加速度
②表达式 a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指转过的圈数)方向:指向圆心
四.开普勒定律
1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处于椭圆的一个焦点上
2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间扫过相等的面积
3.开普勒第三定律:①所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等 ②a—椭圆轨道的半长轴 T—公转周期 则 a3/T2=k 对同一个行星来说,k为常量
✦ 高一物理必修一知识点总结
1、重力是由于地球的吸引而使物体受到的力
⑴地球上的物体受到重力,施力物体是地球。 ⑵重力的方向总是竖直向下的。
2、重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。
①质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。
②一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。
3、重力的大小:G=mg
✦ 高一物理必修一知识点总结
1、动力学的两类基本问题:
(1)已知物体的受力情况,确定物体的运动情况.基本解题思路是:
①根据受力情况,利用牛顿第二定律求出物体的加速度.
②根据题意,选择恰当的运动学公式求解相关的速度、位移等.
(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度.
②根据牛顿第二定律确定物体所受的合外力,从而求出未知力.
(3)注意点:
①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.
②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.
2、关于超重和失重:
在平衡状态时,物体对水平支持物的压力大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力.当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象.当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.对其理解应注意以下三点:
(1)当物体处于超重和失重状态时,物体的重力并没有变化.
(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向.
(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.
易错现象:
(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。
(2)些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。
(3)些同学对超重、失重的概念理解不清,误认为超重就是物体的重力增加啦,失重就是物体的重力减少啦。
✦ 高一物理必修一知识点总结
1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。
2、自由落体运动规律
3、竖直上抛运动:
可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。
(2)竖直上抛运动的对称性
物体以初速度v0竖直上抛,A、B为途中的任意两点,C为点,则:
(1)时间对称性
物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。
(2)速度对称性
物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。
[关键一点]
在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解。
易错现象
1、忽略自由落体运动必须同时具备仅受重力和初速度为零
2、忽略竖直上抛运动中的多解
3、小球或杆过某一位置或圆筒的问题
高一物理必修一知识点整理:运动的图象运动的相遇和追及问题
1、图象:
图像在中学物理中占有举足轻重的地位,其优点是可以形象直观地反映物理量间的函数关系。位移和速度都是时间的函数,在描述运动规律时,常用x—t图象和v—t图象。
(1)x—t图象
①物理意义:反映了做直线运动的物体的位移随时间变化的规律。②表示物体处于静止状态
②图线斜率的意义
①图线上某点切线的斜率的大小表示物体速度的大小。
②图线上某点切线的斜率的正负表示物体方向。
③两种特殊的x—t图象
(1)匀速直线运动的x—t图象是一条过原点的直线。
(2)若x—t图象是一条平行于时间轴的直线,则表示物体处
于静止状态
(2)v—t图象
①物理意义:反映了做直线运动的物体的速度随时间变化
的规律。
②图线斜率的意义
a图线上某点切线的斜率的大小表示物体运动的加速度的大小。
b图线上某点切线的斜率的正负表示加速度的方向。
③图象与坐标轴围成的“面积”的意义
a图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。
b若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时间轴的下方,表示这段时间内的位移方向为负方向。
③常见的两种图象形式
(1)匀速直线运动的v—t图象是与横轴平行的直线。
(2)匀变速直线运动的v—t图象是一条倾斜的直线。
2、相遇和追及问题:
这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件。
1、混淆x—t图象和v—t图象,不能区分它们的物理意义
2、不能正确计算图线的斜率、面积
✦ 高一物理必修一知识点总结
伽利略的理想实验(见P76、77,以及单摆实验)
牛顿第一定律
1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——物体的运动并不需要力来维持。
2.物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。
3.惯性是物体的固有属性,与物体受力、运动状态无关,质量是物体惯性大小的唯一量度。
4.物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。
✦ 高一物理必修一知识点总结
曲线运动
1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2.物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
分运动:
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.
6.①水平分速度:②竖直分速度:③t秒末的合速度
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示
7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8.描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
(2)角速度:=/t(指转过的角度,转一圈为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)周期T,频率:f=1/T
(4)线速度、角速度及周期之间的关系:
10.向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11.向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
12.注意:
(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67Nm2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G9.8m/s2
高空物体的重力加速度:mg=Gg=G9.8m/s2
4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。
由mg=mv2/R或由==7.9km/s
5.开普勒三大定律
6.利用万有引力定律计算天体质量
7.通过万有引力定律和向心力公式计算环绕速度
8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
功、功率、机械能和能源
1.做功两要素:力和物体在力的方向上发生位移
2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)
3.物体做正功负功问题(将理解为F与V所成的角,更为简单)
(1)当=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,
如小球在水平桌面上滚动,桌面对球的支持力不做功。
(2)当90度时,cos0,W0.这表示力F对物体做正功。
如人用力推车前进时,人的推力F对车做正功。
(3)当大于90度小于等于180度时,cos0,W0.这表示力F对物体做负功。
如人用力阻碍车前进时,人的推力F对车做负功。
一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。
例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了克服,就不能再说做了负功
4.动能是标量,只有大小,没有方向。表达式
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度
解答思路:
①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)
解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。
实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
✦ 高一物理必修一知识点总结
1、弹力
⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。
⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。
2、弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。
3、弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大。弹簧弹力:F = Kx(x为伸长量或压缩量,K为劲度系数)
4、相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定。
-
推荐阅读:
高一物理知识点总结(汇集二篇)
高一生物必修一知识点总结(精选十二篇)
高一生物必修一知识点(汇编19篇)
2025高中生物必修一知识点(热门7篇)
高一上册地理必修一知识点整理(范文7篇)
高一上册地理必修一知识点整理(收藏12篇)
-
更多精彩高一物理必修一知识点总结内容,请访问我们为您准备的专题:高一物理必修一知识点总结