一起合同网

导航栏 ×

合同范本|初中函数课件(收藏十七篇)

发布时间:2017-12-30

初中函数课件(收藏十七篇)。

初中函数课件 〖1〗



二次函数是我们在数学学习中经常会遇到的一个重要概念。它在解决实际问题中有着广泛的应用,并且在数学建模中也扮演着重要的角色。本文将详细介绍二次函数的定义、特征以及应用等方面的内容,以帮助读者更好地理解和掌握二次函数的知识。



首先,我们来了解二次函数的定义。二次函数是指具有以下形式的函数:f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。这里的a决定了二次函数的开口方向,当a > 0时,二次函数开口向上;当a


其次,我们来探讨二次函数的特征。二次函数最重要的特征之一就是顶点坐标。对于一般形式的二次函数f(x) = ax^2 + bx + c,它的顶点坐标为(-b/2a, f(-b/2a))。顶点坐标有着很重要的几何意义,它代表了二次函数的最值点,也就是函数图像的最高点或最低点。



此外,二次函数还有着其他一些重要的性质。例如,二次函数的零点是指函数图像与x轴相交的点,求解二次函数的零点可以使用因式分解、配方法、求根公式等方法。另外,二次函数还可以通过平移、伸缩、翻转等变换来产生不同的函数图像,这些变换对应着二次函数的参数a、b、c的取值。通过灵活运用这些性质,我们可以更好地理解和分析二次函数的图像。



最后,我们来了解一下二次函数在实际问题中的应用。二次函数的应用非常广泛,尤其在物理、经济、生物等领域,有着重要的作用。例如,抛物线的运动轨迹可以用二次函数来描述;经济学中的成本、收益等问题也可以用二次函数来建模;生物学中的种群增长、病毒传播等问题也可以采用二次函数来描述。因此,掌握二次函数的知识可以帮助我们更好地理解和解决实际问题。



总结起来,二次函数是数学学习中一个重要的概念,具有广泛的应用价值。它的定义、特征以及应用等方面的内容我们都进行了详细的介绍。通过学习和掌握二次函数的知识,我们可以更好地理解和解决实际问题,也能在数学建模中运用二次函数来描述和分析各种问题。希望本文对读者的学习和理解有所帮助。

初中函数课件 〖2〗

教学目标:

使学生掌握对数形式复合函数的'单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.

教学重点:

复合函数单调性、奇偶性的讨论方法.

教学难点:

复合函数单调性、奇偶性的讨论方法.

教学过程:

(1)当0<a<1时,由y=logax是减函数,得:0<a<23

(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1

A.0.76<log0.76<60.7 B.0.76<60.7<log0.76

C.log0.76<60.7<0.76 D.log0.76<0.76<60.7

解:由于60.7>1,0<0.76<1,log0.76<0 答案:D

[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小

|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga |

∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)

由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,

∴|loga(1-x)|>|loga(1+x)|

lg(1+x)lg(1-x) =|log(1-x)(1+x)|

∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x

∴0<log(1-x) 11+x <log(1-x)(1-x)=1

∴|loga(1-x)|>|loga(1+x)|

∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]

=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x

即|loga(1-x)|>|loga(1+x)|

当a>1时,|loga(1-x)|-|loga(1+x)|

=-loga(1-x)-loga(1+x)=-loga(1-x2)

当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0

∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0

∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|

[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.

解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.

当a2-1≠0时,其充要条件是:

a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53

又a=-1,f(x)=0满足题意,a=1不合题意.

[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小

f(x)-g(x)=1+logx3-2logx2=logx(34 x).

①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).

②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)

故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)

[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]

(9x-1-5)= [4(3x-1-2)]

∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0

∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3

log2(2-x-1)(-1)log2[2(2-x-1)]=-2

初中函数课件 〖3〗

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

初中数学函数常用公式

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

5.求两个一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

//2]

/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)

x y

+ + 在第一象限

+ - 在第四象限

- + 在第二象限

- - 在第三象限

8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2

9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1

10.

y=k(x-n)+b就是向右平移n个单位

y=k(x+n)+b就是向左平移n个单位

口诀:右减左加(对于y=kx+b来说,只改变k)

y=kx+b+n就是向上平移n个单位

y=kx+b-n就是向下平移n个单位

口诀:上加下减(对于y=kx+b来说,只改变b)

数学函数公式

定义域

R(实数集)

值域

R(实数集)

奇偶性

奇函数

单调性

当k>三象限,从左往右,y随x的增大而增大(单调递增),为增函数;

当k<四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

周期性

不是周期函数。

对称性

无轴对称性,但关于原点中心对称。

图像

正比例函数的图像是经过坐标原点(纵截距都为0。正比例函数的图像是一条过原点的直线。

正比例函数y=kx(k≠0),当k的绝对值越大,直线越“陡”;当k的绝对值越小,直线越“平”。

正比例函数求法 设该正比例函数的解析式为 y=kx(k≠0),将已知点的坐标代入上式得到k,即可求出正比例函数的解析式。另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其x,y值即可。

正比例函数图像的作法

1、在x允许的范围内取一个值,根据解析式求出y的值;

y的值描出点;

3、作出第二步描出的点和原点的直线(因为两点确定一直线)。

温馨提示:正比例函数属于一次函数,但一次函数却不一定是正比例函数。

初中数学函数公式

正切函数

正切函数是三角函数的一种

英文:tangent

简写:tan

中文:正切

概念

把∠A的对边与∠A的邻边的比叫做∠A的正切,

记作 tan=∠A的对边/∠A的邻边=a/b

锐角三角函数

tan15°=2-√3

tan30°=√3/3

tan45°=1

tan60°=√3

形式是f(x)=tanx

它与正弦函数的最大区别是定义域的不连续性.

正切函数的性质

1、定义域:{x|x≠(π/2)+kπ,k∈Z}

2、值域:实数集R

3、奇偶性:奇函数

4、单调性:在区间(-π/2+kπ,π/2+kπ),k∈Z上都是增函数

5、周期性:最小正周期π(可用π/|ω|来求)

6、最值:无最大值与最小值

7、零点:kπ, k∈Z

8、对称性:

轴对称:无对称轴

中心对称:关于点(kπ/2,0)对称 k∈Z

实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π点都是它的对称中心.

正切函数诱导公式

tan(2π+α)=tanα

tan(-α) =-tanα

tan(2π-α)=-tanα

tan(π-α) =-tanα

tan(π+α) =tanα

初中函数课件 〖4〗

函数是数学中最重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。托马斯称:函数是现代数学思想之花。

《集合与函数概念》一章在高中数学中起着承上启下的作用。本课学习的函数概念及其反映出来的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。函数的思想方法贯穿了高中数学课程的始终。

本小节是继学习集合语言之后,运用集合与对应语言,在初中学习的基础上,进一步刻画函数概念,目的是让学生认识到它们优越性,从根本上揭示函数的本质。因此本课的教学重点是:学会用集合与对应语言刻画函数概念,进一步认识函数是描述客观世界中变量间依赖关系的数学模型。

1.正确理解函数的概念,会用集合与对应语言刻画函数。通过实例分析,体会对应关系在刻画函数概念中的作用;强化数学的应用与建模意识;培养学生的学习兴趣。

2.理解函数三要素,会求简单函数的定义域。通过例题教学与练习,培养归纳概括能力。

3.理解符号y=f(x)的含义,明确f(x)与f(a)的区别与联系。体会函数思想,代换思想,提高思维品质。

本堂课作为一堂公开课,我曾在多个班级试教。主要问题有:

首先,由三个实例归纳共性会遇到困难。原因是由具体实例到抽象的数学语言,要求学生具备较强的归纳概括能力;而对高一学生抽象思维能力相对较弱。

其次,学生不容易认识到函数概念的整体性。原因是把函数单一地理解成函数中的对应关系,甚至认为函数就是函数值。

第三,函数符号y=f(x)比较抽象,学生难以理解。

因此本课的教学难点是:1、从主观知识抽象成为客观概念。2、函数符号y=f(x)的理解。

在初中学生已学习了变量观点下的函数定义,具体研究了几类最简单的函数,对函数并不陌生;学生已经会把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围,学生能列举出函数的实例,已具备初步的数学建模能力。                                                        我们目前所教的学生经历了初中新课程改革,他们普遍思维活跃,表达能力强,有较强的独立解决问题的能力。在平时的学习过程中,他们更喜欢教师创造疑问,然后自己想办法解决问题,通过教师的启发点拨,学生以自己的努力找到解决问题的方法。学生作为教学主体随时对所学知识产生有意注意,努力思索解决疑问的方式,使自己的能力通过教师的点拨得到发挥。

针对学生这一学习方式,我们在教学过程中从学生已有的知识经验出发,让学生明白新问题产生的背景,引导学生对三个实例进行分析,然后归纳共性,抽象出用集合与对应语言刻画的函数概念。其间采用了多媒体动画演示、教师引导、学生探究、讨论、交流一系列活动,让学生感到“概念的.得出是水到渠成的,自然的而不是强加于人的”。

对函数概念的整体性的理解,通过设计“想一想”、“练一练”、“试一试”等问题情景激发学生积极参与,在问题解决的过程中巩固函数概念。而对函数符号y=f(x),则让学生分析实例和动手操作,来认识和理解符号的内涵;并进一步渗透函数思想、代换思想。如三个实例用统一的符号表示、例4中计算当自变量是数字、字母不同情况时的函数值。让学生在做数学中领会含义,学会解题方法,提高解决问题的能力。

《标准》提倡运用信息技术呈现以往教学难以呈现的课程内容,数学的理解需要直观的观察、视觉的感知,特别是几何图形的性质,复杂的计算过程,函数的动态变化过程、几何直观背景等,若能利用信息技术来直观呈现使其可视化将会有助于学生的理解。本节课将充分利用信息技术支持课堂教学。

1、   多媒体动画演示炮弹发射。在形象生动的情景中感受高度h随时间t的变化而变化的运动规律。

2、   用几何画板画出h=130t-5t2的图象。在图象上任取一点P(t,h),然后拖动点P的位置,观察点P的横坐标t与纵坐标h的变化规律。

3、   制作幻灯片展示问题情景。

初中函数课件 〖5〗

反比例函数的图像和性质



反比例函数是高中数学中的一种重要函数,也是函数的基本类型之一。它的函数公式为y=k/x,其中k为常数,x≠0。通常情况下,反比例函数是一种下降的曲线,当自变量x增大时,函数值y减小,反之亦然。在本文中,我们将深入探究反比例函数的图像和性质的相关知识。



反比例函数的图像



反比例函数的图像通常是一条下降的曲线,其中,x轴长短线上的点表示自变量,y轴长短线上的点表示函数值。反比例函数的图像不过是一组曲线,它们有着很多相同的性质,下面我们将分别讨论它们的特点。



首先,反比例函数的图像可以通过直接画出其函数值来得到。因为反比例函数的函数公式中的k为一个常数,所以我们可以在画图时选取任意一个k值来画出函数的图像,然后通过调整k值来得到更多曲线。当k值增大时,曲线的开口会向下收缩,反之亦然。



其次,反比例函数的图像有两条特殊的曲线,分别是x轴和y轴。当自变量x为0时,函数值y并没有无限趋于0的趋势,因此x轴上有一条垂直于y轴的直线。相似地,当函数值y为0时,自变量x也不会无限趋于0,因此y轴上也有一条垂直于x轴的直线。这两条特殊曲线被称为反比例函数的渐近线,它们能够帮助我们更好地理解反比例函数的图像。



反比例函数的性质



反比例函数是一种重要的数学函数,它具有许多特殊的性质。下面我们将分别从函数的定义、导数、极值、单调性、对称性和渐近线等方面来阐述其性质。



1. 函数的定义:反比例函数的最大特点在于其函数公式的分母中包含了自变量x。因此,在求函数值时我们必须排除x=0的情况。另外,当x>0时,函数值y0。只有当x=0时,函数值不存在。



2. 导数:由于反比例函数的导数比较复杂,一般来说我们不会求导数来确定其极值和单调性。但是在某些情况下,求导数还是很有必要的。当我们需要求反比例函数的曲线的倾斜程度或者图像在某个点的斜率时,就需要求导数来解决问题。



3. 极值:反比例函数最大或最小的值出现在两个特殊点上,即x=0和y=0。可以证明,在直线x=0上函数取得最大值,而在y=0上函数取得最小值。这两个点都是反比例函数的拐点,并且是异于常函数的唯一特征。



4. 单调性:当自变量x增加时,函数值y减小,也就是说,反比例函数是单调递减的。由于反比例函数在每个拐点处都不连续,因此在某些情况下它并不会单调递减。



5. 对称性:反比例函数的图像有两个轴对称。既有y轴对称,也有x轴对称。这意味着如果我们在图像上求出了一个点,那么这个点的对称点也必然存在于图像上。



6. 渐近线:反比例函数的渐近线可以帮助我们更好地理解该函数。对于该函数,其x轴的渐近线在y轴的正方向上趋近于零,y轴的渐近线在x轴的正方向上趋近于零。这也就是反比例函数的重要特点之一。通过这些渐近线的特性,我们可以更好地预测反比例函数的行为,从而更好地应用它们。



总结



反比例函数是一种重要的数学函数。其图像是一组曲线,有两个特殊的渐近线。反比例函数的性质包括函数的定义、导数、极值、单调性、对称性和渐近线等。对于任何一个数学学生来说,了解反比例函数及其性质都是必要的。这样才能更好地掌握函数的重要性,并应用它们来解决实际问题。

初中函数课件 〖6〗

1、知道一次函数与正比例函数的定义.

2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。

3、弄清一次函数与正比例函数的区别与联系.

重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。

难点:对直线的平移法则的.理解,体会数形结合思想。

1、一次函数与正比例函数的定义 :

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0,那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:

(1从解析式看:y=kx+b(k≠0,b是常数是一次函数;而y=kx(k≠0,b=0是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2从图象看:正比例函数y=kx(k≠0的图象是过原点(0,0的一条直线;而一次函数y=kx+b(k≠0的图象是过点(0,b且与y=kx平行的一条直线。

基础训练一:

(1、指出下列函数中的正比例函数和一次函数:①y = x +1;②y = - x/5;

③y = 3/x ;④y = 4x ;⑤y =x(3x+1-3x ;⑥y=3(x-2;⑦y=x/5-1/2。

(2、下列给出的两个变量中,成正比例函数关系的是:

A、少年儿童的身高和年龄;B、长方形的面积一定,它的长与宽;

C、圆的面积和它的半径;D、匀速运动中速度固定时,路程与时间的关系。

(3、对于函数y =(m+1x + 2- n,当m、n满足什么条件时为正比例函数?当m、n满足什么条件时为一次函数?

3、正比例函数、一次函数的图象和性质:

k,b的符号与直线y=kx+b(k≠0 的位置关系:

k的符号决定了直线y=kx+b(k≠0 ;b的符号决定了直线y=kx+b与y轴的交点 。当k>0时,直线 ; 当k<0时,直线 。

当b>0时,直线交于y轴的 ;当b<0时,直线交于y轴的 。

为此直线y=kx+b(k≠0 的位置有4种情况,分别是:

当k>0, b>0时,直线经过 ;当k>0, b<0时,直线经过 ;

当k<0,b>0时,直线经过 ;当k<0,b<0时,直线经过 。

基础训练二:

1. 写出一个图象经过点(1,- 3的函数解析式为 。

2.直线y = - 2X - 2 不经过第 象限,y随x的增大而 。

3.如果P(2,k在直线y=2x+2上,那么点P到x轴的距离是 。

4.已知正比例函数 y =(3k-1x,,若y随x的增大而增大,则k是 。

5、过点(0,2且与直线y=3x平行的直线是 。

6、若正比例函数y =(1-2mx 的图像过点A(x1,y1和点B(x2,y2当x1y2,则m的取值范围是 。

8、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

9、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

10、将直线y = -2x-2向上平移2个单位得到直线 ;

将它向左平移2个单位得到直线 。

综合训练:已知圆O的半径为1,过点A(2,0的直线切圆O于点B,交y轴于点C。(1求线段AB的长。(2求直线AC的解析式。

从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,课前的工作全由教师完成,教师认真备课,我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状。

初中函数课件 〖7〗

(1) 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

(2) 本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质。难点是对底数在和时,函数值变化情况的区分。

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

初中函数课件 〖8〗

反比例函数的图像和性质



反比例函数是数学中一个常见的函数类型,它在实际生活和工作中也得到了广泛应用。在学习和掌握反比例函数时,为了更好地理解和应用,需要掌握其图像和性质。本文将详细介绍反比例函数的图像和性质。



一、反比例函数的定义及表达式



反比例函数是由两个变量的乘积等于一个常数来定义的函数。其一般表达式为: y = k/x (k ≠ 0)。



其中,x 和 y 是函数的自变量和因变量,k 是常数。



二、反比例函数的图像



反比例函数的图像是一条双曲线。其特点是:当 x 趋近于正无穷或负无穷时,y 趋近于 0;当 x 靠近 0 时,y 趋近于正或负无穷。



拿 y = 3/x 的反比例函数为例,它的图像如下所示:



[图像]



可以看到,当 x 靠近 0 时,y 趋近于正或负无穷,而当 x 趋近正无穷或负无穷时,y 趋近于 0。这也是反比例函数图像的一个特点。



三、反比例函数的性质



1. 零点(x 轴交点)



反比例函数的 x 轴上的零点为 k/y。也就是说,当 y = 0 时,x = ±∞。因为当 y = 0 时,x 无限大或无限小,与反比例函数图像的特点相符。



2. 对称轴



反比例函数的对称轴为 y = x。这是因为反比例函数的定义是 y = k/x,即 x = k/y。将 x 和 y 互换位置,即可得到 y = k/x,即对称轴为 y = x。



3. 单调性



反比例函数在自变量的正负两侧单调递减。这是因为当自变量 x 增大时,因变量 y 会减小。以 y = 3/x 为例,可以看到,当 x 变大时,y 会变小。



4. 渐进线



反比例函数的渐进线有两条,分别是 x 轴和 y 轴。当 x 趋近于正无穷或负无穷时,函数值趋近于 0,即与 x 轴趋近。当 y 趋近于正无穷或负无穷时,函数值趋近于 0,即与 y 轴趋近。



5. 消减率



反比例函数的消减率为反比例常数 k。消减率定义为 y 的变化量与 x 的变化量之比,即 dy/dx = -k/x^2。



在应用反比例函数时,可以利用其性质来解决问题,例如根据消减率求解问题、利用渐进线来近似计算函数值等。



总之,反比例函数是数学中一个重要的函数类型。在学习和应用中,掌握其图像和性质是非常重要的。希望本文能够对读者更好地理解和掌握反比例函数提供帮助。

初中函数课件 〖9〗

反比例函数是一种常见的函数类型,在数学中有着重要的应用。它的图像和性质一直是数学教育中的难点,需要系统地学习和掌握。本文将重点介绍反比例函数的图像和性质,帮助读者深入理解这一函数类型。



一、反比例函数的定义



反比例函数是指一个变量与它的倒数成反比例关系的函数。其定义可以表示为:



f(x) = k/x, k≠0,x≠0



其中,k代表比例常数,x代表自变量,f(x)代表函数值。反比例函数的定义域为x ≠ 0,值域为f(x) ≠ 0。



二、反比例函数的图像



反比例函数的图像是一条双曲线。在坐标系中,它的形状如下图所示:



图1 反比例函数的图像



在图中,AB是反比例函数的渐近线,其方程为y = 0。函数的图像在AB两侧趋近于x轴,但永远不会与其相交。这是因为当x趋近于0时,f(x)的值趋近于无穷大或无穷小,这种趋势不会改变。



反比例函数的性质



1. 定义域



反比例函数的定义域为x ≠ 0。因为当x = 0时,函数不存在。



2. 值域



反比例函数的值域为f(x) ≠ 0。因为当x趋近于0时,f(x)的值无穷大或无穷小。



3. 对称性



反比例函数具有点对称性。也就是说,当(x1, y1)是函数的一个点时,它关于y轴的对称点(x2, y2)也在函数上,且y2 = -y1。



4. 渐近线



反比例函数有两条渐近线,即x轴和y轴。当x趋近于0时,函数的值会趋近于正无穷或负无穷,也就是说,f(x)无法与x轴相交;当x的绝对值趋近于无穷大时,函数的值会趋近于0,也就是说,x轴是函数的水平渐近线。另一方面,当x趋近于0时,f(x)的值会趋近于无穷大或无穷小,也就是说,y轴是函数的垂直渐近线。



5. 单调性



反比例函数在定义域内是单调递减的,也就是说,当x1 f(x2)。这是因为当自变量增大时,函数的值会减小。



6. 零点和极值



反比例函数不存在零点和极值。这是因为当x趋近于0时,函数的值会趋近正无穷或负无穷。



7. 特殊的反比例函数



当k > 0时,反比例函数的图像呈现出一条倒置的双曲线,当k


8. 反比例函数与其他函数的关系



(1) 当函数f(x)和g(x)都是反比例函数时,它们的乘积fg(x)就是一个常数函数。



(2) 反比例函数是一种有理函数,可以用分式法进行简化和计算。



(3) 反比例函数可以与其他函数相加或相乘,生成一些常见的函数类型,如指数函数和对数函数。



总结



反比例函数作为一种常见的函数类型,具有着非常重要的数学应用。它的图像和性质一直是数学教育中的重要内容。本文介绍了反比例函数的定义、图像和性质,包括函数的定义域和值域、对称性、渐近线、单调性、零点和极值、特殊的反比例函数,以及函数与其他函数之间的关系。对于想要深入理解反比例函数的读者来说,这些内容将非常有用。

初中函数课件 〖10〗

反比例函数是高中数学中的一个重要概念,它的图像和性质非常值得学生深入研究。本文将从图像和性质两个方面,对反比例函数进行详细的讲解和解释,帮助学生深入理解和掌握反比例函数的特点和应用。



一、反比例函数的图像



反比例函数的图像是一条反比例曲线,它可以用函数式表示为y=k/x,其中k为正常数。这条曲线具有以下几个特点:



1.图像的形状



反比例函数的图像是一条开口向右下方的双曲线,它没有定义域和值域,因为它在x轴和y轴上都不存在渐近线。



2.渐近线



反比例函数的图像存在两条渐近线,它们是x轴和y轴。



3.对称轴



反比例函数的图像在第一象限和第三象限分别关于y=x对称,因此反比例函数具有对称性。



二、反比例函数的性质



除了图像的特点,反比例函数还具有以下几个性质:



1.定义域和值域



反比例函数的定义域为除了0以外的所有实数,它的值域也为除了0以外的所有实数。



2.单调性



反比例函数在其定义域上是单调递减的。



3.零点和极值



反比例函数没有零点和极值,因为它的图像没有交点和最大值或最小值。



4.特殊点



反比例函数的一个特殊点是原点(0,0),因为当x或y等于0时,函数值不存在。



三、反比例函数的应用



反比例函数在实际问题中的应用非常广泛,例如:



1.速度和时间的关系。当一辆汽车行驶的速度越快,行驶一定距离所需的时间就会越短,因此速度和时间之间的关系可以用反比例函数来表示。



2.人口和资源的关系。当一个地区的人口增加,对资源的需求也会增加,因此人口和资源之间的关系可以用反比例函数来表示。



3.光线的反射。当光线在一定角度入射到平面上时,反射角度与入射角度成反比例关系,因此可以用反比例函数来表示。



总之,反比例函数是一个非常重要的概念,它的图像和性质与许多实际问题密切相关。学生应该通过深入研究和实践,在应用反比例函数解决实际问题中提高自己的数学素养和解决问题的能力。

初中函数课件 〖11〗

正比例函数教学课件

一、教学目标

1.认识正比例函数形式

2.画正比例函数图像

二、教学重难点及教学设计

重点:正比例函数的性质、特征

难点:画出正比例函数图像

教学设计:

1. 从生活中的事例入手引入新课

2. 热炒热卖,即时巩固练习

3. 引导学生自己归纳总结得到正比例函数的知识

三、教具准备

多媒体课件、辅助小黑板、三角板一块

四、教学过程

引导:回顾旧知识,引入新知识。问题:据了解目前市场的鱼是8元/斤 ,顾客买鱼所付的价钱y(单位:元)与买鱼的重量x(单位:斤)变化而变化。请同学们列出函数关系式:

得出函数式:y8x

探索研究:

下列问题中的变量对应规律可用怎样的函数表示?

(1)圆的周长l随半径r的大小变化而变化;l

(2)铁的密度为7.8g

32r /cm,铁块的质量m(单位:g)随它的体积V(单3位:cm)的大小变化而变化;m7.8V

(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;h0.5n

(4)冷冻一个00c的物体,使它每分下降2c,物体的温度T(单位:c)00随冷冻时间t (单位:分)的变化而变化。T

同学们观察一下这些函数有什么共同点? 2t

通过观察正如之前我们一起解决的实际问题时列出的函数

刚才所列出的函数都是常数与自变量的乘积的形式。 y8x一样,

l2r

m7.8V

h0.5n

T2t

y8x

观察一下其中2,7.8,0.5,2,8都是常量,我们统一用k来表示,r,V,n,t,x都是变量,我们用x来表示,函数l,m,h,T,y统一由y表示。则以上式子我们不难给它找到一个通式

组织练习巩固知识点。

研究正比例函数图像:下面我们一起来看一个相对简单的函数式ykx(其中k为常数,k0)。 y2x 请同学们用列图表描点画图像的步骤,先在草稿本上画出图表,然后同学们自己画出该函数的'图像。总结归纳出一些函数性质。

同学们再用相同的方法快速做出y比较一下两函数之间有2x的函数图像,

什么异同之处。

通过学习,我们知道了些什么呢,我们来梳理一下我们今天所学习的内容。 首先,我们会根据问题列出一些形如ykx的函数关系式。

0时,y随x我们还研究了它的一些特性。知道图像过原点(0,0)。当k

的增大而增大,当k0时,y随x的增大而减少。

总结本堂课所学重点。

下来同学们再去生活中采集一些关于正比例函数的应用,后面的内容我们下节课接着讲,今天的作业是习题14.2-1、2、4(1)

下课

初中函数课件 〖12〗

正弦函数图像教学之浅见

对于正弦函数图像,学生容易记错.为使学生记住图像并能熟练地运用,教师还要形象化地帮助学生记忆.

作 者:许桂珍  作者单位:南京工程高等职业学校,江苏・南京,211135 刊 名:科教文汇 英文刊名:EDUCATION SCIENCE & CULTURE MAGAZINE 年,卷(期): “”(23) 分类号:G712 关键词:高职数学教学   正弦函数图像   教学   记忆  

初中函数课件 〖13〗

反比例函数,顾名思义就是指函数的自变量与因变量成反比例关系的函数。它是一种常见的数学函数类型,有着广泛的应用和重要价值。本文将从反比例函数的基本概念、图像、性质以及应用等方面进行详细的探讨。

一、反比例函数的基本概念

反比例函数是一类特殊的函数,其定义形式为 y=k/x(k≠0)。其中,“k”为非零常数,反比例函数的定义域为 x≠0。这个函数的图像关系体现为 一条反比例函数曲线,它呈现出V型,具有显著的对称性。

二、反比例函数的图像

反比例函数的图像是一条从第一象限中心点(1,k)开始从右上角向右下角弯的单曲线,当x趋近于0时,y趋向于无穷大。反比例函数的图像在x轴和y轴分别呈现出水平与垂直渐近线,它们的交点是反比例函数的渐进中心。x>0时,y>0,x0)和 y=-k/x(k>0)的图像来分别代表反比例函数图像在第一象限和第三象限中的关系。

同时,反比例函数的图像也有着显著的对称性。将反比例函数曲线沿着横轴y对称,则可以得到一个新的反比例函数图像,其方程为y=-k/x(k≠0)。

三、反比例函数的性质

反比例函数有许多重要的性质,下面列举几点:

1. 定义域和值域

反比例函数的定义域为x≠0,值域为y≠0。

2. 渐进线

反比例函数的图像有两条渐近线,分别为x轴和y轴,与x轴和y轴平行。当x趋近于0时,y趋向于无穷大,渐近线就是它们的交点。

3. 对称性

反比例函数的图像有着明显的对称性。如果将反比例函数图像沿着y轴对称,则可以得到另一个反比例函数图像,其方程为y=-k/x(k≠0)。

4. 单调性

反比例函数在定义域内单调下降,当x增大时,y逐渐减小。

四、反比例函数的应用

反比例函数在我们的生活中有着广泛的应用。比如,人的步行速度与走的距离就是符合反比例函数的规律。步速越快,每分钟所走的路程就少。此外,还有类似于离心机、计量法等相关技术领域的运用,都可以采用反比例函数来计算。通过反比例函数来描述关系,有助于我们更好的理解问题,从而做出更好的决策。

总之,反比例函数是数学中一种重要的函数类型,其基本概念、图像、性质和应用都有着广泛的研究价值和应用价值。通过对反比例函数的深入了解与研究,不仅能够帮助我们更好的理解数学理论和应用知识,还能够为我们探索更广泛的科学领域提供有力的理论支撑。

初中函数课件 〖14〗

  教学目标

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图像上由自变量的值求出对应的函数的近似值.

  教学重点和难点

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象.

难点:对已知图象能读图、识图,从图象解释函数变化关系.

  教学过程设计

  (一)复习

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4.如果点A的横坐标为3,纵坐标为5,请用记号表示点A(答:A(3,5)).

5.请在坐标平面内画出A点.

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)

  (二)新课

我们在前几节课已经知道,函数关系可以用解析式表示.像y=2x+1就表示以x为自变量时,y是x的函数.

这个函数关系中,y与x的'对应关系,我们还可以用在坐标平面内画出图象的方法表示.

具体做法是

第一步:列表.(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值.

(这种用表格表示函数关系的方法叫做列表法)

第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点.也就是由表中给出的有序实数时,在直角坐标中描出相应的点.

第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象.

例1 在同一直角坐标系中画出下列函数式的图像:

(1) y=-3x; (2)y=-3x+2; (3) y=-3x-3.

分析:按照列表、描点、连线三步操作.

解:

它们的图象分别是图13-25中的(1),(2),(3).

例2 某化我厂1月到12日生产某种产品的统计资料如下:

(1) 在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画出对应的点.把12个点画在同一直角坐标系中.

(2) 按照月份由小到大的顺序,把每两个点用线段连接起来.

(下降的或不升不降的.

(4) 如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?

解:(1),(2)见图13-26.

(3) 产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升.产量下降:8月到9月,9月到10月.产量不升不降:2月到3月;6月到7月,7月到8月.

(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5,所以4月15日的产量约为4.5吨.

  (三)课堂练习

已知函数式y=-2x.用列表(x取-2,-1,0,1,2),描点,连线的程序,画出它的图象.

  (四)小结

到现在,我们已经学过了表示函数关系的方法有三种:

1.解析式法——用数学式子表示函数关系.

2.列表法——通过列表给出函数y与自变量x的对应关系.

3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系描出对应的点.所有这些点的集合,叫做这个.用图象来表示函数y与自变量x对应关系.

这三种表示函数的方法各有优缺点.

1.用解析法表示函数关系

优点:简间明了.能从解析式清楚看到两个变量之间的全部相依关系,并且适合于进行理论分析和推导计算.

缺点:在求对应值时,有进要做较复杂的计算.

2.用列表法表示函数关系

优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便.

缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律.

3.用图象法表示函数关系

优点:形象直观.可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化.

缺点:从自变量的值常常难以找到对应的函数的准确值.

函数的三种基本表示方法,各有各的优点和缺点.因此,要根据不同问题与需要,灵活地采用不同的方法.在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图像.

  (五)作业

1.在图13-27中,不能表示函数关系的图形有( ).

(A) (a),(b),(c) (B)(b),(c),(d) (C) (b),(c)(e) (D)(b),(d),(e)

2.函数 的图象是图13-28中的( ).

3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2).

(1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;

(描点、连线画出此函数的图象.

4.(1) 画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);

(2) 判断下列各有序实数地是不是函数.y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相庆坐标的点是否在你所画的函数图像上:

5.画出下列函数的图象:

(1) y=4x-1; (2)y=4x+1.

6.图13-29是北京春季某一天的气温随时间变化的图象.根据图象回答,在这一天:

(1)8时,12时,20时的气温各是多少;

(2)最高气温与最低气温各是多少;

(3)什么时间气温高,什么时间气温最低.

7.画出函数y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点);

8.画出函数 的图象(先填下表,再描点,然后用平滑曲线顺序连结各点)

  (六)课后研究,突出重点

(1)阅读书后链接内容并通过网络了解三角函数知识在简谐运动,波的传播,交流电中的应用;

初中函数课件 〖15〗

反比例函数是一种特殊的函数类型,在数学中有着广泛的应用和研究。反比例函数的图像具有一定的特点,其性质也十分重要。本文将从反比例函数的定义、图像的特点和性质三个方面进行探讨,以期加深读者对反比例函数的理解和认识。

一、反比例函数的定义

反比例函数是一种形如y=k/x的函数类型,其中k为常数。它的定义域为x≠0,值域为y≠0。当x>0时,y0。反比例函数是一种非线性函数,其图像不是一条直线,所以无法用一般的斜率公式来表示。

二、反比例函数的图像特点

反比例函数的图像具有以下特点:

1、反比例函数的图像不过原点。

2、当x趋近于正无穷或负无穷时,反比例函数的图像将趋近于x轴或y轴。

3、反比例函数的图像不对称。

4、反比例函数的图像越接近坐标轴,函数值越大。

5、反比例函数的图像与x轴和y轴相切或相交。

6、反比例函数的图像具有反比例的性质,在x轴和y轴上的点之间总是满足y=k/x的关系,即乘积恒定。

三、反比例函数的性质

反比例函数具有以下性质:

1、反比例函数的导数为y'=-k/x²,其导函数是一个单调递减的函数。

2、反比例函数在定义域内单调递减,当k>0时,函数呈下凸图像;当k
3、反比例函数具有渐近线,当x趋近于正无穷或负无穷时,函数的图像将趋近于x轴或y轴。

4、反比例函数是一种极限函数,当x趋近于0时,函数值无限大。

5、反比例函数的零点是x=k/y,当y≠0时存在。

以上是反比例函数的主要性质,它们在数学中具有广泛的应用和研究价值。

总之,反比例函数作为一种特殊的函数类型,在数学中有着重要的地位。了解反比例函数的定义、图像和性质,可以帮助我们更好地理解和应用它,同时也能增加我们对数学的兴趣和认识。

初中函数课件 〖16〗

一、教学目标

①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义、能分清实例中的常量与变量,了解自变量与函数的意义、

②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力、

③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情、在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心、

二、教学重点与难点

重点:函数概念的形成过程、

难点:正确理解函数的概念、

三、教学准备

每个小组一副弹簧秤和挂件,一根绳子、

四、教学设计

(一)提出问题:

1、汽车以60千米/时的速度匀速行驶、行驶里程为s千米,行驶时间为t小时、先填写下面的表,再试着用含t的式子表示s:

t(小时) 1 2 3 4 5

s(千米)

2、已知每张电影票的售价为10元、如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

3、要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?

注:(1)让学生充分发表意见,然后教师进行点评、

(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验、

(二)动手实验

1、在一根弹簧秤上悬挂重物,改变并记录重物的质量,

观察并记录弹簧长度的变化,填入下表:

悬挂重物的质量m(kg)

弹簧长度l(cm)

如果弹簧原长10cm,每1kg重物使弹簧伸长0、5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

2、用10dm长的绳子围成矩形、试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)、设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?

注:分组进行实验活动,然后各组选派代表汇报、

通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息、

五、探究新知

(一)变量与常量的.概念

1、在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程、其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的在一个变化过程中,数值发生变化的量,我们称之为变量、也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量、

2、请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量、

3、举出一些变化的实例,指出其中的变量和常量、

注:分组活动、先独立思考,然后组内交流并作记录,最后各组选派代表汇报、

培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力、

(二)函数的概念

1、在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

师生分析得出:上面的每个问题和实验中的两个变量互相联系、当其中一个变量取定一个值时,另一个变量就有惟一确定的值、

2、分组讨论教科书P、7 “观察”中的两个问题、

注:使学生加深对各种表示函数关系的表达方式的印象、

3、一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数、如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值、例如在问题1中,时间t是自变量,里程s是t的函数、t=1时,其函数值s为60,t=2时,其函数值s为120、

同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

在人口统计表中,年份x是自变量,人口数y是x的函数、当x=1999时,函数值y=12、52、

六、巩固新知

下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

1、右图是北京某日温度变化图

2、如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x

3、国内平信邮资(外埠,100克内)简表:

信件质量m/克O

邮资y/元O、80 1、60 2、40

注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法、

七、总结归纳

1、常量与变量的概念;

2、函数的定义;

3、函数的三种表示方式、

注:通过总结归纳,完善学生已有的知识结构、

八、布置作业

1、必做题:教科书P、18习题11、1第1题、

2、选做题:教科书P、18习题11、1第2题、

3、备选题:

(1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

③14、15、16日的日平均温度有什么关系?

④点A表示的是哪天的日平均温度?大约是多少度?

⑤说说这一周的日平均温度是怎样变化的

(2)如右图所示,梯形上底的长是x,下底的长是15,高是8、

①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数、

②用表格表示当x从10变到20时(每次增加1),y的相应值、

③当x每增加1时,y如何变化?说说你的理由、

④当x=0时,y等于多少?此时它表示的是什么?

(3)研究表明,土豆的产量与氮肥的施用量有如下关系:

施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量(吨/公顷) 15、18 21、36 25、72 32、29 34、03 39、45 43、15 43、46 40、83 30、75

①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数、

②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由、

④简单说一说氮肥的施用量对土豆产量的影响、

九、设计思想

变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃、因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律、遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力、同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题、还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人、

初中函数课件 〖17〗



引言:二次函数是我们在高中数学中学习的一种重要的函数,它在解决各种实际问题中都起着重要的作用。本篇文章将结合实际问题和图表具体生动的介绍二次函数的基本概念、性质和解题方法,以期帮助读者深入理解二次函数的知识。



第一部分:基本概念和性质(300字)



首先,我们来回顾一下二次函数的基本概念和性质。二次函数是一种形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数,且a ≠ 0。二次函数的图像是一条抛物线,开口方向由a的正负决定,开口向上表示a > 0,开口向下表示a


其次,我们需要了解二次函数的顶点坐标。对于二次函数f(x) = ax^2 + bx + c,其顶点坐标为(-b/2a, f(-b/2a))。顶点是二次函数的图像的最低点或最高点,它对于解析式中的系数a, b, c起到调整图像位置的作用。



第二部分:二次函数的图像和变化(300字)



在这一部分,我们将通过图表具体展示二次函数的变化规律和特点。



首先,我们考虑一种特殊情况,即当a > 0时,二次函数的图像是一个开口向上的抛物线。当a逐渐增大时,抛物线越来越瘦长,顶点越来越靠近y轴。相反,当a逐渐减小时,抛物线越来越扁平,顶点越来越远离y轴。



其次,我们再来看看当a


通过观察这些图像,我们可以发现二次函数的a的值对于图像的形状和顶点位置有着明显的影响。



第三部分:二次函数的解题方法(400字)



在实际问题中,经常需要根据已知条件建立二次函数模型并解决问题。这里,我们将介绍两种常见的解题方法。



首先,对于一些已知二次函数图像的情况,我们可以利用图像来解决问题。例如,求二次函数的最值和零点。最值对应于图像的顶点点,可以直接读取,而零点对应于函数与x轴相交的点,可以通过观察图像得到。



其次,对于一些特定问题,我们可以利用二次函数的性质和解析式来建立方程,从而解决问题。例如,在一些最优化问题中,需要求解使得二次函数取得最值的条件。我们可以通过解方程来找到使函数取最值的自变量值,并进而求得最值。



此外,还有一些特殊的解题方法和技巧,例如配方法和因式分解法等。这些方法在实际问题中都有着广泛的应用,读者可以根据具体问题选择相应的解题方法。



结语:通过本篇文章的阅读,我们对二次函数的基本概念、性质和解题方法有了进一步的了解。希望读者在今后的学习中能够灵活运用二次函数的知识,解决更多实际问题。

文章来源:https://www.hc179.com/hetongfanben/100449.html