一起合同网

导航栏 ×

高中数学教育教学案例

发布时间:2025-03-13

2025高中数学教育教学案例(通用十篇)。

作为一名老师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。那么教学设计应该怎么写才合适呢?下面是小编为大家整理的高中数学优秀教学设计,希望能够帮助到大家。

高中数学教育教学案例 篇1

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

教学过程:

1.使学生熟练掌握函数的概念和映射的定义;

2.使学生能够根据已知条件求出函数的定义域和值域;

3.使学生掌握函数的三种表示方法。

教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的'数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

注意:

① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。

2.构成函数的三要素定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4.区间及写法:

设a、b是两个实数,且a

(1)满足不等式axb?的实数x的集合叫做闭区间,表示为(a,b);

(2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法

①解析法

②列表法

③图像法

高中数学教育教学案例 篇2

前言

为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

1、集合与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的.学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标

1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教育教学案例 篇3

在多年的数学教学过程中,我体会到积极的非智力因素可以推动和促进学生智力的发展,而且在现行的数学教学大纲中,智力因素和非智力因素都已经提高到相当重要的程度。因此在教学过程中教师应注重培养好学生非智力因素。以下是我的两点总结:

一、创造有利条件,激发学习兴趣

数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种有效情境,为学生提供学习数学活动的机会,激发学生对数学学习的兴趣以及学好数学的愿望。尤其是对于小学生来说,直观的、具体的、形象的方式更能吸引他们,因此我们在课堂教学中要自始至终创设各种方式的情境,以此来吸引学生的学习兴趣,使他们更好地参与到数学学习中来。

二、培养师生情感,使其亲师信道

古人云:“亲其师,信其道”。要使学生亲师信道,必须改变过去“一言堂”的课堂环境,充分发挥学生潜能,使学生不再受束缚,使教学向民主化、人性化方面发展,允许学生有想法,鼓励学生说出自己想法。在课堂上,要把问题交还给学生,激励学生在互动中解决问题。教学中遇到能让学生自己说出自己归纳的知识内容,教师绝对不说;能让学生做的教师绝对不包办;能让学生自己发现找出答案的教师绝不再作指导。只有在不规范不准确的地方教师才可以作补充说明,绝不允许教师将自己的结论强加给学生。这样师生间的`距离近了,感情增加了。而积极的情感能提高学生的心理和生理的活动能量,从而提高思维和学习潜能。学生听课也伴随一定的情感,真正做到亲其师,信其道。

以上两点看似简单,却不是一两天能做到的,这就需要我们教师尽心尽力的培养学生的学习兴趣,在生活上多关心学生,拉进师生距离,相信学生定能愉快的教学环境中学到更多,他们学习的进步才是我们最大的成功。

高中数学教育教学案例 篇4

在新课程形势下要求一个称职的高中数学教师,决不能“教书匠”式地“照本宣科”,而要在教学中不断反思,不断学习,与时共进。新课程提倡培养学生独立思考能力、发现问题与解决问题的能力以及探究式学习的习惯。可是,如果教师对于教学不做任何反思,既不注意及时吸收他们的研究成果,又不对教学做认真的思考,上课时,只是就事论事地将基本的知识传授给学生,下课后要他们死记,而不鼓励他们思考分析,那么,又怎能转变学生被动接受、死记硬背的学习方式,拓展学生学习和探究数学问题的空间呢?所以,教师首先要在教学中不断反思。

一、教师从主导者成为组织者、引导者

在以往的教学中,我们一直在倡导“教师为主导”、“学生为主体”,但是在实际教学中教师常常是“主演加导演”。在教师的主导下,学生只能被动学习。学生要成为学习的主人,教师必须从“主导者”成为“组织者”、“引导者”。

在课堂教学中,教师要努力创设民主、平等、和谐的课堂氛围,从创设生动具体的情境入手,组织师生共同参与的学习活动,以缩短教师与学生、学生与学生、学生与文本之间的距离。

数学知识不是独立于学生之外的“外来物”而是在学生熟悉的事物和情境之中,与学生已有的知识和生活经验相关联的内容。因此,在数学教学中,教师一定要注意贴近学生的生活实际,适当引入他们喜欢的活动,如讲故事、做游戏、表演等,使他们产生乐学、好学的动力,从而增强学生探究的欲望.

比如在上指数函数单调性这一章节的时候,我讲了这样一个故事:一个叫杰米的百万富翁,一天他碰到了一件奇怪的事,一个叫韦伯的人对他说,我想和你订个合同,在整整一个月中,我每天给你10万元,而你第一天只需给我一分钱,以后每天给我的钱是前一天的两倍,杰米非常高兴,他同意订立这样的合同,如果是你们,你们是否愿意订立这样的合同.学生刚开始都很高兴地说愿意,看到我笑后又想想可能有什么不对的地方,于是齐声说不要这样的合约,那么到底谁更为合算,能否用我们的数学知识来进行探讨,此时学生的兴致达到极点,并由此发现其实际为一个“指数爆炸”的现象.

二、重视课本概念的阅读,培养学生的自学能力。

中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂外,另外一个原因是许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝地讲,满满黑板的写,使学生产生依赖性,数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容,此外,还可以发挥课本使用文字、符号的规范作用,潜移默化培养和提高学生准确说练的文字表达能力和自学能力。

重视阅读数学课本,首先要教师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,教师按课本原文逐字、逐句、逐节阅读。在阅读中,让学生反复认真思考,对书中叙述的概念、定理、定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如换成其它词语行吗?省略某某字行吗?加上某某字行吗?等等,要读出书中的要点、难点和疑点,读出字里行间所蕴含的内容,读出从课文中提炼的数学思想、观点和方法。教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误、笔误所产生的概念错误,从而使学生能准确地掌握课本知识,提高课堂效率。

为了帮助学生在课外或课内阅读,教师还可以列出读书提纲,以便使学生更快更好地理解课文,例如,高一下期平面向量中平面向量的坐标运算一节,笔者拟了以下读书提纲,让学生阅读自学:

平面向量的`坐标表示是怎样进行的?

起点在原点的向量、起点不在原点的向量、相等的向量,它们在坐标系中是怎样表示的?

两向量平行时,它的坐标表示是什么?

通过学生对课文的阅读,加深了学生对课文的理解,提高了学生的自学能力。

三、挖掘课本隐含知识,培养学生的研究能力。

高中数学新教材中知识点的抽象性和隐含性比其它学科显得更为突出,数学中的知识点

1、关爱学生,激起学习激情。我知道热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。

2、每天除了把资料书的作业做完后还做3道典型的高考题,当天批改,对没有完成作业进行批评教育直到其改进为止。

3、强化基础知识的记忆,对一些重点知识、一些性质进行不定时的测验,及时检查他们对基础知识的掌握程度,以便因材施教。

4、提高课堂45分钟效率。课前尽量认真备课,把可能遇见的情况逐一解决,并时常练一些题同时归纳近几年高考的主要题型和所有的知识点。在课堂上我尽量把一些解题的主要思想方法和基本技巧,比如数形结合思想、函数方程的思想、化归与转化思想,选择题中的直接法,排除法,特殊值法,极值法等教给他们,既使他们不能立刻学会,但时间久了,自然而然的就能把方法融入解题当中了。

5、高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。课下个别辅导,通过辅导能知道哪些知识存在问题,或者是我上课遗漏的问题,都能及时得到解决。

6、认真分析数学临界内的临界生和临界外的临界生的学习数学的状态。比如说每次测试都能在90分以上的同学,应建议他们课后可做一些适合自己的题目。对一些数学“学困生”,鼓励他们多问问题,多思考。采用低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。

高中数学教育教学案例 篇5

函数的奇偶性

函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.

教学目标:

1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.

一、问题情景

1.观察如下两图,思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的`一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

二、建立模型

由上面的分析讨论引导学生建立奇函数、偶函数的定义

1.奇、偶函数的定义

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

2.提出问题,组织学生讨论

(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

(2)奇、偶函数的图像有什么特征?

(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

三、解释应用[例题]

1.判断下列函数的奇偶性.

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),

而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

任取x1>x2>0,则-x1<-x2<0.

∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).

∴f(x)在(0,+∞)上是增函数.

思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练习]

1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

2. f(x)=-x3|x|的大致图像可能是()

3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

四、拓展延伸

1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教育教学案例 篇6

前言

为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的.文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程,书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪,你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

1、集合与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标

1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教育教学案例 篇7

在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上40分钟的学习效率,这对于刚刚接触高中教学的我来说,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,构成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,个性是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂40分钟的学习效率,在有限的时间里,出色地完成教学任务。

一、要有明确的教学目标

教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选取教学的策略、方法和媒体,把资料进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、潜力、技能、心理、思想品德等方面到达预定的目标,以提高学生的综合素质。

二、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,能够在黑板的一角将这些资料简短地写出来,以便引起学生的重视。讲授重点资料,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还能够插入与此类知识有关的笑话,对所学资料在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的理解潜力。尤其是在选取例题时,例题最好是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再针对本节的知识资料选取相关题目,往往每节课都涉及好几种题型。

三、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,从而把原先45分钟的资料在40分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学资料进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的资料,学习的重点和难点。同时通过投影仪,同步地将资料在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的资料。在课堂教学中,对于板演量大的资料,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节资料的总结、选取题的训练等等都能够借助于投影仪来完成。可能的话,教学能够自编电脑课件,借助电脑来生动形象地展示所教资料。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都能够用电脑来演示。

四、根据具体资料,选取恰当的教学方法

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学资料的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所构成的角度。这样在讲授空间两条直线之间的位置关系时,就能够通过这些几何模型,直观地加以说明。此外,我们还能够结合课堂资料,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维潜力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

五、关爱学生,及时鼓励

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲资料的掌握状况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,能够对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

六、充分发挥学生主体作用,调动学生的学习积极性

学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。

在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依靠,不利于培养学生独立思考的潜力和新方法的构成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。

七、切实重视基础知识、基本技能和基本方法

众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养潜力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过超多的`题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生超多地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中决定错误。不少学生说:此刻的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及潜力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

八、渗透教学思想方法,培养综合运用潜力

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮忙学生掌握科学的方法,从而到达传授知识,培养潜力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,我们就就应多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。

高中数学教育教学案例 篇8

新课程改革注重学生良好学习习惯的培养,重视学习的可持续发展。学生学习反思的培养体现了新课程改革的理念,学生通过对达到某种学习目标成功经验和失败教训的总结,可以及时调整自己的学习反思,从而有效地提高学习的自主性。

1、在探究新知识的过程中学会反思

学生总是带着自己的一套见解、经验来到课堂,并通过日常生活经验和先前的学习,来建构新知。先前的见解、经验就是学生反思 的起点,学生初步形成知识模型、找到不同的反思、提出不同的见解之后是学生学习的契机。在教学中,教师应找准学生学习的起点,抓住学习的契机,才能组织学生进行有效的`学习反思,使学生学反思。

2、在数学知识获取的过程中学会学习反思。

在课堂教学中,我不仅让学生亲历知识的发生发展过程,还让学生学习知识的获取过程,让学生在学习中悟出知识的来龙去脉与知识之间的密切联系。

3、在题目做错之后学会思考

学生在学习基础知识时不求甚解,粗心大意,忽视对结论的思考,满足于一知半解,这是造成作业错误的主要原因,结果常常出现不符合实际,数据出错等现象,特别是一些“隐性错误”发生频率更高。因此,教师应当结合学生作业中出现的错误,精心设计教学情境,帮助学生从基本概念,基础知识的角度来剖析作业错误的原因,给学生提供一个对基础知识,基本概念重新理解的机会,使学生在纠错过程中掌握基础知识,理解基本概念,自觉地检验结果,培养分析能力。

高中数学教育教学案例 篇9

数学归纳法是高中数学中的一个重点和难点内容,也是一种重要的数学方法,数学归纳法这一方法,贯通了高中数学的几大知识点:不等式,数列,三角函数,平面几何等。通过对它的学习,能起到以下几方面的作用:提高学生的逻辑思维、推理能力;培养学生辩证思维素质,全面提高学生数学能力;培养学生科学探索的创新精神,提高学生综合素质。 对数学归纳法的教学,我主要从以下几个方面进行设计:

(1)为什么要使用数学归纳法?

(2)什么是数学归纳法?

(3)什么时候使用数学归纳法?

(4)怎样正确使用数学归纳法?

根据本节课的内容和学生的实际水平,我采用的是引导发现法和感性体验法进行教学。

先是给出求数列通项的一个题目,学生自主完成,结果几乎都是用不完全归纳法得出结论的,于是引出完全归纳法和不完全归纳法这两个概念,为了说明两种归纳法的可靠程度,我通过一个盒子中的粉笔(白色和彩色)、笔盖等的判断和回忆等差数列的通项公式的推导,又通过多米诺骨牌游戏的实际操作促进学生对 “递推关系” 的理解,为数学归纳法的应用前提和场合提供形象化的`参照物。

通过生活事例和数学问题的比较,引导学生讨论,促使学生主动思维。

通过本节课的教学也使学生掌握递推原理,提高学生的逻辑思维和推理能力。

本节课的结构可以,对学生的学法指导不错,让学生清楚学习数学归纳法的用途,指明了方向,总体来说,学生接受的程度不错。不足之处是引入的时间把握不好,影响了后续的教学,没有能按计划完成教学任务。

高中数学教育教学案例 篇10

教学准备

教学目标

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;(群学网 qx54.com)

(3)将实际问题抽象为与三角函数有关的简单函数模型。

教学重难点

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程

一、练习讲解:《习案》作业十三的第3、4题

3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

(1)求小球摆动的周期和频率;

(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的.水深的近似数值(精确到0.001)。

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?

(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材P65面3题

三、小结:

1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

四、作业《习案》作业十四及十五。