一起合同网

导航栏 ×

比和比的应用教案

发布时间:2025-01-17

比和比的应用教案(汇编十五篇)。

作为一位杰出的教职工,通常需要用到教学设计来辅助教学,借助教学设计可使学生在单位时间内能够学到更多的知识。怎样写教学设计才更能起到其作用呢?下面是小编收集整理的六年级《比的应用》教学设计,希望对大家有所帮助。

比和比的应用教案 篇1

教材分析:

本节课是“比的应用”的练习课,是学生在基本掌握了按比分配应用题的结构特征后而进行的综合练习,它是新授课的补充和延续。按比例分配就是把一个数量按照一定的比进行分配。它是“平均分”问题的发展,平均分是按比分配的特例。按比分配问题有不同解法:一是把比看作分得的份数,用份数求出每一份的方法来解答;二是把比化为分数,用分数乘法来解答;三是用比例知识来解答。现在教材一般用第二种方法为主,因为学生在理解了比和分数的关系,并掌握分数乘法实际应用的基础上,比较容易接受这种方法,而且也有利于加强知识间的联系。

练习课是以学生独立练习为主的课型,是新授课的补充和延伸。在教学中,一是要注意发挥练习课的检测评价功能,主要检测学生对知识与技能的掌握情况和思维发展的水平;二是要注意发挥练习课激励功能,因为练习过程是不断解决问题的过程,应使学生在练习过程中感受到问题解决后所带来的成功体验,逐步提高学生学习数学的自信心;三是要注意发挥练习的思维训练功能。思维训练离不开数学的学习,而数学的`学习主要是引导学生经历数学的训练,在训练中逐步提高解决问题的能力。

教学过程:

1、笑笑读一本书,已读的页数和未读页数的比是1:3

问:你能变换一种说法吗?

问:如果笑笑继续读,什么变了?什么没变?

【设计意图】

回顾前面的比、分数之间的关系

2、看图说话

盐:

水:

问:通过线段图你读出什么信息?

现要调制这样的盐水140克,需要盐和水各多少克?

独立思考

归纳:这是一个基本的把两个量的和按一定的比进行分配的应用题,即和比分配

和比分配

140÷(1+6)

一份的量

3、用120厘米的铁丝做一个长、宽、高的比是3:2:1的长方体框架。这个长方体框架的长、宽、高各是多少厘米?

小组讨论

120÷4×(3+2+1)

一份的量

4、两地相距480千米,甲、乙两辆汽车同是从两地出发、相向而行,3小时相遇,甲、乙两辆车的速度比是9:7.甲、乙两车的速度分别是多少?

独立思考

480÷3÷(9+7)

速度和

一份的量

问题:

1、比较2、3题有什么共同点?

2、第1题为什么不用这样做?

归纳:它们都是典型的和比分配应用题

5、小明期中考试中语文、数学的平均分是95,语文、数学成绩的比是3:2。小明语文、数学的成绩分别是多少?

问题:谁有想法了?

95×2÷(3+2)

一份的量

问题:1、这和3、4有什么区别?

2、它们有什么共同点?

在日常生活中,并不是所有有关比的应用题都是这样的

6、一块长方形的地,长比宽多24米,长与宽的比是5:3,这块地的面积是多少平方米?

独立思考,汇报自己的想法

差比分配

24÷(5-3)

长与宽的差长与宽相差的份数

一份的量

归纳:典型的差比分配应用题

对应量除以对应的份数就是一份的量

7、五、六年级的同学参加植树活动,五年级植树120棵,五、六年级植树的棵树比是2:3.六年级植树多少棵?

问题:这和前面的应用题有没有区别?

(已知一部分,求另一部分)

部分比

120÷2

一份的量×3

3份的量

问题:谁有不同的想法?

120÷×

(单位1是-------)

120÷

(单位1是-------)

120×

(单位1是-------)

回顾:1、这几道题有什么共同的解题方法?

(先求一份的量,再求几份量)

2、今天讲的应用题你认为可以分为哪几类?

3、你有什么收获?

挑战自己:

笑笑读一本书,已读的页数和未读页数的比是1:3.如果笑笑再读12页,这时读的页数和未读页数的比是1:2.这本书共有多少页?

提示:抓住不变量

板书设计

和比分配差比分配部分比

140÷(1+6)

一份的量

120÷4×(3+2+1)

一份的量24÷(5-3)120÷2

长与宽的差长与宽相差的份一份的量×3

480÷3÷(9+7)

速度和

一份的量

95×2÷(3+2)

比和比的应用教案 篇2

设计说明

本节课呈现的是笑笑家的家庭支出情况,所以课前让学生了解生活中有关百分数的知识,以激发学生的学习兴趣,让学生在调查的过程中,接触到更多的实际生活中的百分数,认识到数学在生活中的广泛应用。在教学过程中,利用教材提供的情境,使学生从中了解百分数与现实生活的联系。让学生在讨论、交流解题过程与方法的过程中提高学习数学的兴趣和积极性,同时在讨论、交流中拓展学生的思维,让学生综合运用所学知识解决实际问题的能力得到提高。

课前准备

教师准备 PPT课件 课堂活动卡

学生准备 课前收集的生活中有关百分数的知识

教学过程

⊙直接导入

前面的学习,我们已经体会到了百分数与现实生活的.密切联系。请同学们想一想,生活中还有哪些方面能用到百分数?

设计意图:开门见山,直接导入,既让学生瞬间回顾了前面所学的知识,又为本节课的学习制造了一个积极动脑的气氛,让学生能快速地进入到探究新知的学习中来。

⊙自学探究

课件出示例题。

笑笑家20xx年食品支出总额占家庭总支出的55%,其他支出总额占家庭总支出的45%。食品支出比其他支出多620元。笑笑家的家庭总支出是多少元?

师:例题呈现的就是生活中用到百分数的事例,请同学们自由读题,理解题意。

1.自学指导。

(1)尝试画线段图分析题意,找出等量关系。

(2)选择合适的方法解决问题。

(3)你还有其他的方法吗?

2.学生独立探索解题方法,教师巡视指导。

3.引导学生对比教材93页的方法,梳理自己的解题思路。

4.与同桌交流自己的解题方法。

5.展示解题过程。

(1)指名板演解题过程。

方法一 解:设笑笑家20xx年的总支出是x元,那么食品支出是55%x元,其他支出是45%x元。

55%x-45%x=620

10%x=620

x=6200

方法二 620÷(55%-45%)

=620÷10%

=6200(元)

答:笑笑家的家庭总支出是6200元。

(2)其他学生提出自己的疑问。

预设

生1:为什么设笑笑家的总支出是x元?

生2:“55%-45%”表示什么意思?

生3:为什么用“620÷(55%-45%)”呢?

设计意图:通过自学指导学生独立探索解题方法;给学生充分的自学空间,利于学生发散思维的培养;解决问题后对照教材,不仅能验证自己的解题思路是否正确,而且也完善了自己的思考过程,与同桌的交流更优化了自己的思考过程。

比和比的应用教案 篇3

【课题】计划

【教学目标】

知识目标:

(1)理解计划的含义、特点、种类等知识; (2)掌握常用的计划的写作。 能力目标:通过计划的学习与写作练习,培养学生的应用文写作能力。 情感目标:树立做人做事要有“计划”的意识。

【教学重点】

计划的写作。

【教学难点】

计划的写作格式。

【教学设计】

(1)通过模拟的工作情景导入计划的概念; (2)引导学生认识计划的概念、特点;

(3)针对计划的'不同使用情况,辨认计划的种类; (4)通过习作练习,巩固所学的知识。

(5)根据学生的认知规律,顺应学生的学习习惯展开,层层推进教学。

【教学备品】

教学课件。

【课时安排】

1课时。(45分钟)

【教学过程】

比和比的应用教案 篇4

一、创设情境,导入新课

师:小明的妈妈记录了小明0~10的身高,如下表

(师出示P110例2的统计表)

B学生小组评价优秀作品;

C全班交流优秀作品。

3.根据折线统计图进行合理推测:小明身高的发展趋势

1、准备未完成的统计图

2、培养学生在统计的'过程中发现问题、解决问题及进行合理推测的能力。

三、巩固练习

1.完成书中P111的做一做;

2.完成书中P112练习十九第二小题的问题解答;

教师巡视指导

学生独立完成,师组织学生进行评析、交流。

四、作业

完成书中P113练习十九第3小题

学生回家完成

板书设计:折线统计图

1、描点2、连线3、标数量

比和比的应用教案 篇5

教学目标:

1、在自主探索中探究出两步除法应用题的数量关系,并能用两步除法解决相关的生活问题。

2、通过独立思考,小组合作活动,能从多个角度解决同一个问题,提高解决问题的能力,发展思维。

3、培养学生主动探索的学习热情,感受数学与生活的密切联系。教学重点:使学生理解连除应用题的数量关系,学会用两种方法解答。

教学难点:

1、用两种解答方法解答应用题。

2、理解数量关系,找出解决问题的间接信息,灵活解决问题。教具准备:口算练习卡片、投影仪等。

教学过程

一、复习。

1、口算:13×690÷380÷5÷340÷4÷548÷(2×4)

2、投影出示复习题:三年级女生要进行集体舞表演,她们平均分成2队,每队分成3组,每组10人,一共有多少人?

3、改变复习题的一个条件和问题后,出示例4三年级女生要进行集体舞表演,老师将参加表演的60人平均成2队,每队平均分成3组,每组有多少人?

4、引出课题(板书:连除应用题)

二、探究新知,形成策略

1、探究例4的解答方法

(1)读例题,学习两种分析、解答应用题的方法.

(2)思考讨论

2、结合学生讨论,教学两种解法,并列出综合算式.

3、观察比较,归纳概括.教师提问:观察两种解法在思路上有什么异同?

4、引发思考,巩固解题方法。三、巩固提升。

1、独立完成教材第53页做一做。

2、判断题。

四、全课小结。这节课我们学习的是什么知识?

教学反思:

在课堂中我注重学生解题策略的`讲解,用线段帮助学生理解题意,让学生用不同的说的方式展示自己,如个别说,小组讨论说,跟着同学一起说,给了学生充足的时间与空间,让学生通过说展现思维过程,表达自己的想法,学生每列出一个算式,就要求说出求的是什么,培养学生数学语言的完整性,并让不同层次的学生学到自己喜欢的思维方式。

比和比的应用教案 篇6

教学内容:

浙教版第十一册第103页例1例2,练习十七题。

教学目标:

1、掌握求一个数与它的几分之几的差(和)是多少的应用题的数量关系,并能正确解答。

2、通过分析、比较,培养学生善于思考问题提出问题的能力。

3、培养学生良好的审题习惯。

4、渗透环保观念和终身学习观念。

教学重点和难点和关键

教学重点:分析题中的数量关系和掌握解题思路,并能正确解答。

教学难点:1、寻求所求问题对应的几分之几。2、弄清两种不同的解题思路。

教学关键:1、确定单位“1”。2、找出所求问题占单位“1”的几分之几。

教学过程:

一、复习铺垫

1、找单位“1”

(1)一本书,已经看了1/4,还剩几分之几?

(2)实际投资是计划投资的4/5。

(3)男生25人,占全班人数的5/9。

2、口答:

(1)一堆煤,运走了3/5,还剩几分之几?

(2)女生人数比男生人数多1/3,女生比男生多的人数占( )的1/3。

(3)白兔比黑兔少1/4,白兔是黑兔的几分之几?

二、创设情景、引入新知

1、你们喜获吗?鸟类种数减少了,就意味着许多美丽的鸟类从此就永远消失了。你们知道为什么吗?由于人类的这些行为,有的鸟类灭绝了,还有一些鸟类,尽管还存在,但数量已经很少了,如果再不加以保护,也将很快灭绝掉。丹顶鹤就是这样的一种鸟类。丹顶鹤竖家的一级保护动物,是我国特产鸟类,群居黑龙江省的扎龙,丹顶鹤生活特别有规律,它体姿优美文雅、风貌优秀、翩翩起舞可与孔雀开屏媲美,是长寿动物与龟并称,古人将它作为长寿和幸福的象征,所以特别受中国人的钟爱。

2、今天老师还给大家带来了几条有关丹顶鹤的信息。

出示信息1:国家一级保护动物野生丹顶鹤,20xx年全世界约有20xx只,我国占其中的1/4。

根据这些信息:你能算出20xx年我国约有多少只丹顶鹤吗?怎样列式?你是怎么想的?

(20xx×1/4=500(只),求20xx只的1/4是多少?)

3、如果我们把我国约有多少只?这个问题去掉,你能提出哪些问题?(外国约有多少只?)

出示信息2(例4):

揭示课题:这就是我们今天共同探讨的问题“稍复杂的求一个数的几分之几的应用题”(板书课题)

三、引导探究,解决问题

1、请同学们把信息2表达的意思用线段图表示出来。

展示并口述画的线段图。

2、是把什么看着单位“1”?平均分成几份?(1/4)表示谁占谁的几分之几呢?怎样解答这道题呢?请同学们根据线段图列出算式。(先立解答,师巡视,再交流)

3、两名学生板演两种解法。

4、你怎样想的?能说出解题思路吗?(学生口述思路,教师在线段图上展示)

方法一:把全世界的丹顶鹤的只数看着单位“1”,先求出我国的只数,再用总只数减去我国的只数,剩下的就是其他国家的只数。

方法二:把全世界的丹顶鹤的只数看着单位“1”,先求出其他国家占总只数的几分之几,再求出其他国家的只数?

5、比较一下,这两种解法有什么区别?有什么联系?(学生小组交流、汇报。)

〈1〉相同点:单位“1”相同。

〈2〉不同点:第一种解法是用总只数减去我国的只数算出其它国家的。第二种解法是先求出其他国家的只数占总数的几分之几,再用总只数乘这个几分之几,就算出其他国家有多少只。

四、再次探索

1、教师引言:正如前面所说:丹顶鹤是“长寿和幸福”的象征,人们称它为仙鹤,因此我国在扎龙专门设立自然保护区又誉为“鹤的乐园”。在人们的得力保护下,近两年来,丹顶鹤的数量逐年增多,请看下面信息:

出示信息3:20xx年我国约有500只丹顶鹤,20xx年我国的丹顶鹤的只数比20xx年的只数多4/5,20xx年我国约有多少只?

2、请同学们默读信息3,已知什么?要求什么?理解哪一句话对解题最有帮助?怎样理解20xx年我国丹鹤的只数比20xx年的只数多呢?(把20xx年500只丹顶鹤看作单位“1”,20xx年比20xx年多的只数是20xx年只数的4/5)

3、(师生齐画线段图)这道题有几个不同的数量相比,画几条线段图更好表示?(用两条线段表示)

教师引导学生画出20xx年的线段,然后让学生立完成余到此为下部分,一人板演。(巡视)

4、展示线段图并叙述。

指线段图引导分析:我们把什么看着单位“1”?平均分成几份?把20xx年的`只数分成了几部分?哪两部分?(一部分与20xx年同样多,另一部分比20xx年多2/5。)

5、请同学们根据线段图列出算式。(师巡视,指名板演两种代表性的解法)

6、你能说出解题思路吗?

(第一种解法:先求多的只数+20xx年的只数=20xx的只数,第二种解法:先求出20xx年占单位“1”的几分之几,或20xx年是20xx年的(1+4/5)倍,再求20xx年的只数;也就是求500只的(1+4/5)倍是多少)

五、回顾小结

1、刚才同学们用自己的聪明才智解决了以上问题,现在我们一起研究信息2和信息3这两问题有什么共同特点。

(信息2把总数20xx只分成两部分,一部分是我国的只数,另一部分是其它国家的只数。信息3是把20xx年和20xx年相比,把20xx年的只数分成两部分,一部分是和20xx年的只数同样多,另一部分比20xx的只数多2/5。

2、相同点:

单位“1”的数量都是已知的。

3、没有直接告诉所求问题占单位“1”量的几分之几,解题时需要用单位"1"的量减去或加上它的几分之几,或者先算出要求的数量占单位"1"的几分之几,再用单位"1"的量乘这个几分之几。)

4、指导学生看书例题5,完成课本内容并质疑问难。

比和比的应用教案 篇7

教学内容 第43页例2

教学过程:

一、创设情境引入新课

1、出示两个篮球队的身高统计表,让学生根据统计表说一说谁最高,谁最矮。

2、如果两个篮球队进行身高比较,你认为哪个队队员身高高些?

王强是欢乐队中最高的队员,我们能不能根据这个信息就下结论欢乐队总体身高比开心队高吗?为什么?

3、讨论:怎样比较两支球队的整体身高情况。

二、引导学生探究新知(引导学生探索用平均数的方法比较)

1、合作学习

让学生自己进行平均数计算。

2、提问:142厘米表示什么?它是指欢乐队某个队员的身高吗?

3、144厘米表示什么?它是指开心队某个队员的身高吗?

4、你能告诉我们两个队的总体身高比较情况吗?

虽然欢乐队中的王强是两个队中最高的,但欢乐队的总体身高情况不如开心队,体会平均数是反映一组数据总体情况的一个很好的统计量。说一说我们在生活中哪些地方也需要运用“平均数”知识来解决问题?

师:看到你们这么勤奋好学,又学得那么有水平。老师今天也特别高兴,我相信你们以后会发现和自学到更多的'数学知识。其实“平均数”的知识还有很多,在生活实际中应用也很广,你们回忆得起来吗?对我们上课的评分,也可以来比较,哪一周课堂得分高、哪一周课堂得分低?我们也可以进行比较

出示上两周课堂评分。

[板书: 100分 98]

[板书: 99分 99]

[板书: 98分 99]

[板书: 100分 100]

[板书: 96分 98]

[板书: 98分 100]

你们认为第一周课课堂评分肯定比几分多,比几分少?

师生共同演算:平均分是多少?

全课小结。

教学目标

1、 使学生掌握平均数的意义和求平均数的方法。

2、 懂得平均数在统计学上的意义和作用。

3、 培养应用所学知识合理、灵活解决简单的实际问题。

教学重点

使学生掌握平均数的意义和求平均数的方法。

教学难点

培养应用所学知识合理、灵活解决简单的实际问题。

比和比的应用教案 篇8

教学内容:

人教版实验教材第十一册第49页。

教材分析:

这部分内容是在学生学过比、分数乘法意义以及分数乘除应用题之后安排的,既加强知识间的内在联系,又为后面的学习奠定了基础。

学生分析:

按比例分配问题是把一个数量按照一定的比进行分配。按比例分配问题有多种不同解法。现在小学教材中一般都采用把比转化为分数用分数知识来解答。因为学生对理解比和分数的关系比较了解,对分数应用题有了一定的基础,所以学习起来应该比较容易。所以本节课的重点应放在如何把比的问题转化为分数问题来解决。何如解决生活中的按比分配问题。

教学目标:

1.知识与技能:使学生理解按比例分配的意义,掌握按比分配的思想,形成按比分配的能力。

2.过程与方法:在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。培养学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。

3.情感态度价值观:重视学生数学探索按比分配问题的活动经验的积累。培养学生自主、探究、合作的意识和了解家乡,热爱家乡,喜欢数学的情感。

教学重点:掌握按比分配应用题的结构特点和解题思路。

教学难点:正确分析,灵活解决按比分配的各种类型的实际问题。

教学方法:引导、探究、尝试发现法。

学法指导:自主探究与合作交流有机结合。

教具:多媒体

教学过程:

一、创设教学情境

1.听着歌曲《秦岭最美是商洛》,欣赏商州莲湖公园的图片。

2.莲湖公园这么美,那你对莲湖公园了解多少呢?新建的莲湖公园水域面积有多少亩?绿化面积有多少亩呢?

【设计意图】通过学生听音乐、赏美景、猜地点,吸引学生的注意力,激发学生了解家乡、热爱家乡、为建设家乡而发奋学习的激情。使学生感悟到数学来源生活,学数学是为了更好地生活!

二、实施教学

1.出示例1.扩建后的莲湖公园绿化面积和水域面积共165亩,绿化面积和水域面积的比是1:2.

(1)从这句话中你能获得什么信息呢?

(2)你能提出什么问题?

(3)讨论提示

①绿化与水域总面积被平均分成几份?每份是多少?各占几份?

②绿化面积占它们总面积的几分之几?水域面积呢?

(4)展示学生的四种做法

①先算每一份,再按各部分的份数算。

②先算各部分占全部得分率,再按分数乘法应用题算。

③先算全部是各部分的几分之几,再按分数除法应用题算。

④列方程计算。

(5)让学生比较哪种方法较好。

2.展示课题《比的应用》

【设计意图】首先对教材进行了整合。这里我用孩子们熟悉的,感兴趣的题材呈现“按比分配”的'知识点,舍弃了教材原有的题材。其次,在呈现的过程中,培养了学生发现问题、提出问题、分析问题和运用知识解决问题的实际能力。再次,是重视了对课堂生成的有效引导和巧妙运用。既重视了学生的创新意识的培养,有对算法进行了优化。

3.知识运用:例题变形

扩建后莲湖公园总面积220亩,其中未绿化的陆地面积、绿化面积和水域面积的比是1:1:2.问未绿化的陆地面积、绿化面积和水域面积各是多少亩?

4.学以致用:医用酒精是用蒸馏水和纯酒精按1:3配制而成。

①若有200ml蒸馏水,需要多少毫升纯酒精恰好能配制成符合要求的医用酒精?

②若有1200ml纯酒精,有足够的蒸馏水能配制成多少毫升符合要求的医用酒精?

【设计意图】重视孩子对知识灵活迁移运用能力的培养。

5.我是小法官:判断正误并说明理由。

(1)学校把栽300棵树的任务分配给六年级三个班,三个班的人数分别是46人、54人和50人。最合理的分配方案是每班栽100棵树。()

(2)有一些苹果分给幼儿园得小朋友们,大班分得二分之一,中班分得三分之一,小班分得六分之一。大中小班分得苹果的数量之比是

即3:2:1()。

【设计意图】首先,让学生知道平均分是按比分配的一种特殊形式。其次,为拓展运用清障护航。

6.拓展运用

有一位老人,他有三个儿子和17匹马。在他临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分。”老人去世后,三兄弟看到了遗嘱。遗嘱上写着:“我把17匹马全都留给我的三个儿子。长子得一半,次子得三分之一,幼子得九分之一。不许杀马,不许流血。你们必须遵从父亲的遗嘱。”

温馨提示:三个儿子分得马的数量之比是几比几比几?化成最简整数比结果是几比几比几?

【设计意图】让学生了解古代趣题中折射出的按比分配原理。

三、谈谈你这节课的收获?

(1)解决“按比分配”型实际问题的方法

①、求出各部分之间的数量比,由各部分之间的数量比可得出各部分占总体的分率。

②、用分数乘法求出各部分的量分别是多少。

(2)我对新建后的莲湖公园有了更多的了解。

四、布置作业

必做题:课本55第4题;

选做题:课本56页第7题;

思考题:课本56页第11题。

比和比的应用教案 篇9

教学目标:

1、知识与技能:在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。

2、过程与方法:根据实际情况,独立完成学习任务。

3、情感、态度与价值观:让学生通过采用“进一法”或“去尾法”取商的近似值,感受这些方法的现实意义。

教学重、难点:能根据实际情况选择合适的方法取商的近似值解决生活问题。

教具准备:多媒体课件、计算器。

教学过程:

一、复习铺垫。

1、体育室花19.4元买来一筒羽毛球,每筒12个,平均每个多少元?

(1)学生独立解答。

(2)汇报讲评:根据你的生活经验,算钱时可以保留几位小数,为什么?

2、引入:我们在解决实际问题时,要根据实际情况取商的近似值。(板书课题)

二、探索新知。

1、学习例12(1)

(1)出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要准备几个瓶?

(2)学生读题理解题意,独立列式计算。

(3)汇报:2.5÷0.4=6.25(个)

(4)设疑:我们算到的结果是6.25个瓶,那在我们的生活中能找到6.25个瓶子吗?根据你的生活经验,这里求“需要准备几个瓶?”得数应该保留什么数?

(5)小组讨论:根据实际情况,这里需要准备几个瓶?为什么?

(6)学生汇报讨论情况。

(7)演示多媒体课件,验证结果。

边演示课件,边提问:如果是用我们以前的`“四舍五入法”取近似数,就需要准备几个瓶子?能装得下2.5千克的香油吗?6个瓶子只能装多少千克香油?所以要准备几个瓶子?

(8)小结:在这道题里,应用我们以前学习的用“四舍五入法”取近似值,能解决问题吗?在这种情况下,出现了不满5也需要向前一位进1,这种方法我们把它叫做“进一法”。

(9)在我们的日常生活中,有像这样的情况吗?请你说一说。

2、填一填

(1)五年级有210个同学,需租车到东莞参观学习,每辆车最多可坐40人,需要租几辆车?

列式为:210÷40=5.25≈( )辆应用( )法取近似值。

(2)把一包150千克的大米平均分成每袋40千克,需要准备几个袋子?

列式为:150÷40=3.75≈( )个应用( )法取近似值。

3、学习例12(2)

(1)出示题目:王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

(2)要求这个问题,要用什么方法列式?怎样列?

(3)思考:①根据你的生活经验,要求“这些红丝带可以包装几个礼盒?”,得数应保留什么数?

②如果用“四舍五入法”或“进一法”取近似值,结果是多少?这些丝带够吗?那么这些丝带可以包装几个礼盒?

(4)小结:在这道题里,出现了满5也要把尾数舍去的情况,我们把这种取近似值的方法叫做“去尾法”。

(5)在我们的生活中,有像这样的情况吗?请你说一说。

4、选一选

(1)做一套衣服要用布2.5m,现有30.5m的布,可以做多少套这样的衣服?列式为:()

A、30.5÷2.5=12.2≈12(套)B、30.5÷2.5=12.2≈13(套)

(2)同学们把75.5厘米的纸条按每6厘米裁成一段做圆环,这个纸条最多能做成几个圆环?列式为:()

A、75.5÷6=12.58≈13(个)B、75.5÷6=12.58≈12(个)

5、学生看书本P33的内容,质疑。

6、小结:在解决实际问题时,我们有的时候用“四舍五入法”取近似值,也有的时候用“进一法”或“去尾法”取近似值,总之我们要根据实际情况选择合适的方法取商的近似值。

三、练习提高。

1、P33“做一做”的题目。

2、P35第7题。

3、大家今天的表现真不错,现在老师给大家介绍个漂亮的地方。(出示漂亮的桂林山水的风景)这么美的地方,你想去游览吗?这里有一种既开心刺激又经济实惠的游览方式——“乘坐竹筏游漓江”。请看:(1)一个竹筏一天租金220元,可乘6人。根据这些信息,你能提出什么数学问题?(提出问题后,学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

(2)我们班有47人,准备乘坐竹筏游漓江,已知每个竹筏可乘6人,得租几个竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

(3)同学们,朴实的桂林人民用自己勤劳的双手建造出一个个精美的竹筏,为桂林的旅游事业争光添彩。我还了解到了一个信息:做一个竹筏需要10根竹子,请问96根符合要求的竹子能做几个这样的竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

(4)对学生进行环保教育。

四、全课总结。

同学们,没想到吧,在愉快的旅游之中随处都可以见到数学,由此可见,数学就在我们身边。通过今天的学习,你学到了什么知识?

五、布置作业。

课本P35第6、8、9题。

比和比的应用教案 篇10

教学目标:

1、知识与技能

经历正比例意义的建构过程,通过具体问题认识成正比例的量,初步感受生活中存在很多成正比例的量,并能正确判断成正比例的量。

2、过程与方法

通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

3、情感态度与价值观

在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。教学重点:正确理解正比例的意义。教学难点:能准确判断成正比例的量。教学准备:多媒体课件,学生练习纸 教学过程:

一、在学生熟悉的儿歌中引入正比例的量: 你听过《数青蛙》这一首儿歌吗?(课件)

师:你会往下唱吗?三只青蛙,四只青蛙,n只青蛙呢?

师:你在唱得时候有什么规律吗?

生:嘴巴数和青蛙只数一样,眼睛数总是青蛙只数的2倍,腿数总是青蛙只数的4倍。

师:你真聪明,会横着观察观察表格。

生:青蛙每增加一只,嘴巴数增加1张,眼睛增加2只,腿数增加4条。

师:很好,你是竖着观察表格的。

师:我已经学过比,所以还可以说,眼睛数/青蛙只数=2;腿数/青蛙只数=4;嘴巴数/青蛙只数=1。

看来,嘴巴数、眼睛数、腿数都随着青蛙只数的变化而变化,像这样有一定关系的量,在数学上,称为相关联的量。

(学生的自主学习需要教师的引导,此处教师看似无意的评价,实际是对学生学习方法的指导,直接影响学生后续的自主学习活动,有了此处的指导,学生接下来就能顺利地自主观察表格发现规律了。)

二、自主建构正比例的量

(一)初步感受成正比例量的变化规律

看来,像这样相关联的量在变化的时候有一定的规律,有兴趣继续研究吗?在我们的生活中,像这样相关联的量还有许多,老师为同学们的研究找了几组材料:(课件)

1、学生独立填表。

2、选择其中的一张表格,通过观察说说你发现了什么规律? 你可以模仿前面找规律的方法。

3、反馈交流

4、小结:这两张表格的变化情况有什么相同点? 一种量增加或(减少),另一种量也相应增加或(减少),它们相对应的两个数的比值一定

(二)在比较中继续感受成正比例量的变化规律

看到同学们学得那么认真,数学老爷爷也要来考考我们,想挑战吗?他给我们带来下面两组信息,并告诉我们只有一张表格的变化情况和前面的变化规律一样,但不知是哪一张,你能找出是哪一张吗?我们先把表格填写完整。

1、出示材料:

下面是边长与周长,边长与面积的变化情况,把表填写完整。

2、四人小组活动:

思考:哪一张表格的变化情况和前面的变化规律一样? 3、比较图像,再次感受正比例

除了用表格的形式表示它们的变化情况,我们还可以用图来表示它们的变化情况,你想看吗? 指导看图,说说你发现了什么?

师:另外两张表格的变化情况我们也画成了图,你想看吗? 思考:这四张图如果让你分类,你会怎么分?为什么这样分? 其中三张图为什么都呈直线状态,朝一个方向生长?(比值一定)其中一张图为什么呈曲线?(比值不一定)

揭题:像这样的两个相关联的量,我们在数学上就说它们成正比例,具体可以这样描述:

(三)尝试归纳正比例的意义

1、出示:

像这样时间增加(或减少),所走的路程也相应增加(或减少),而且相应的路程与时间的比值(也就是速度)相同,那么,我们就说路程和时间成正比例。

2、你觉得这里哪几个词比较重要?

3、你能照这样说说另外几组成正比例的量吗? 不成正比例的用虽然但是来说

三、运用提高

1、小明和爸爸的年龄变化情况如下,把表填写完整。父子的年龄成正比例吗?你怎么想的?

2、在《数青蛙》儿歌中找找成正比例的量。

四、小结提升:

通过今天这节课的学习,你有什么收获?成正比例的量有什么重要特征?

刚才同学们在一首《数青蛙》的儿歌中就找到了这么多的成正比例的量,可以想象在我们的生活中一定存在着更多的成正比例的量,希望同学们在课后能以数学的眼光去观察,发现生活中成正比例的量,下一节课我们一起交流

板书设计:

正比例的意义

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的两个量的`比的比值(商)是一定的 路程/时间=速度(一定)总价/数量=单价(一定)

《正比例》教学反思

对比过北师大和人教版两个版本的教材,人教版的教材中介绍了“两个相关联的量”,而北师大版中没有,在最初的教学设计中本没有设计介绍“相关联的量”这一环节,但课前准备中我也为是否设计这一环节而矛盾,但最后还是在我的课堂中呈现了这一概念,课后自己不禁反思,“正比例的意义”本来就是一抽象的概念,我还在课堂上有加入“相关联的量”这一概念,无疑是增加了学生理解的难度。另在设计教案之初,本以为本班学生整体情况较好,在处理“正比例的意义”中的“比值一定”时,只注重了口头上的描述而忽略了让学生动手去算算比值。课后看见学生的作业,自己不尽感叹“失策”,对于抽象的概念一定要让学生通过实际的生活经验或者是通过自己的实际操作去理解。

还有本节课还有一个最大的问题,就是没有及时抓住学生精彩的生成。也许我们每一位老师都有过这样的经历:我们精心设计的一节课,原想着会很顺利地在课堂教学中予以实施,但事实却并不是这样,往往会因为学生的一些出乎意料的想法或问题,而使我们的教学偏离了预设的轨道,课上得并不那么顺利。比如,象正方形的周长、面积与其边长,原的周长与半径这些特例是否成正比例,我觉得这实际上就是教师如何有效处理动态生成的问题。

教学不应只是平实地传递和接受知识的过程,更多的是师生双方在课堂上互动对话、实践创造,随机生成与资源开发的过程。它是教师及时捕捉课堂上无法预见的教学因素,利用课堂上随机生成的资源展开再教学的过程。就正如赵老师前面提到的“课中也要备课”,动态生成才能真正体现学生的主体性和课堂的真实性,它追求课堂的真实、自然、和谐,再现师生“原汁原味”的教学生态情境,从而达到师生共识、共享、共进的教学高境界,实现师生生命价值的不断超越。

那么,怎样才能做到课堂上的精彩生成呢?从生成的内容看,有显性的知识、技能生成和隐性的情感、态度生成。因此,我认为:促进课堂生成的关键是教师课前的预设、教学的机智和学生的心理环境。要达到课堂有精彩的生成且能很好的抓住并能利用生成这点还需要我的不断努力。

比和比的应用教案 篇11

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生运用正、反比例的意义正确解答应用题。

3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。

教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。

教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路

教学准备:课件

教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)

一、铺垫孕伏,建立表象

1、判断下面每题中的两种量成什么比例关系?

○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )

○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间

○5全校学生做操,每行站的人数和站的行数

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。

指名学生口答,老师板书。

二、创设情境,探究新知

从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)

1、教学例1

(1)出示例1(课件演示)让学生读题

一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?

师:你用什么方法解答,给大家介绍一下如何?(自由回答)

(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)

学生解答如下几种:

解法一:140÷2×5=70×5=350千米

解法二:140×(5÷2)=140×2.5=350千米

如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:

A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?

B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)

C它们有什么关系?(行驶的路程和时间成正比例关系)

D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。

教师板书:速度一定,路程和时间成正比例。

师追问:两次行驶的路程和时间的什么相等(比值相等)

解法三:(用比例方法,怎样列式)

解:设甲乙两地间的总路长X千米

140 X 或 140:2=X:5

2 5 2X=140×5

X=350

答:甲乙两地之间公路长350千米。

小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。

2、怎样检验这道题做得是否正确呢?

3、变式练习改编题

出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?

4、教学例2(课件演示)

(1)出示例2,学生读题

例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?

提问:

(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的'?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

学生利用以前的方法解答。

70×5÷4=350÷4=87.5(千米)

(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)

这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。

指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。

(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程

4X=70×5 X=70×5/4 X=87.5

答:每小时行驶87.5千米。

师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?

B)题中哪一种是固定不变的?从哪里看出来?

C)它们有什么关系?

D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。

(5)变式练习(改编题)

出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?

解:设需要x小时到达

87.5x=70×5 x=4

答:需要4小时到达。

三、归纳总结,揭示意义

想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。

指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)

四、巩固练习,考考自己(课件演示)

请你们按照刚才学习例题的方法去分析,只要列出式子就行。

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。

3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?

(2)王师傅4小时生产了200个零件,照这样计算 ?

4、四选一,每题只能选一次

(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)

a.150×30=1200x b.30:150=1200:x

c.150x=30×1200 d.150:30=1200:x

(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)

a.60×8=3x b.60:8=3:x

c.60×8=(8-3)x d.3:x=8:60

(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)

a.5×40=480x b.5:40=x:480

c.40x=5×480 d.40:5=x:480

(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)

a.24×5=6x b.24:5=6:x

c.(24+6)x=24×5 d.(24+6):x=24:5

(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)

a.3×75%=2x b.75%:3=2:x

c.75%x=2×3 d.3:75%=2:x

五、分层练习,深化新知

○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x

○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?

12×30=(12+6)×X

○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?

120×28=(120+20)×X

六、全课总结,温故知新

解比例应用题的一般步骤是什么?(学生自己用语言叙述)

一般方法和步骤:

1、判断题目中两种相关联的量是成正比例还是反比例;

2、设未知量为x,注意写明计量单位;

3、列出比例式,并解比例式;

4、检查后写出答案;

5、特别注意所得答案是否符合实际。

七、课后反馈,挑战难题

小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:

“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”

小明需要你的帮助,你会怎样编题?

比和比的应用教案 篇12

教学内容:教材第58页例4和“练一练”,练习十二第5—7题。

教学要求:

使学生初步学会列含有未知数z的等式解答相差关系中逆叙的一步计算应用题的方法,进一步掌握列含有未知数芦的等式解答应用题的步骤和思路,能正确列出含有未知数j的等式解答相差关系的逆叙应用题;进一步培养学生的分析、推理和解题能

教学过程:

一、复习铺垫

1.列含有未知数i的等式解答应用题。

(1)养鸡场养鸡500只,卖出一些后还剩300只,卖出了多少

(2)张师傅和李师傅一共加工零件135个。其中李师傅加工了75个,张师傅加工了多少个?

指名两人板演,其余学生分两组,每组完成一道,各人做在练习本上。

集体订正。

提问:列含有未知数工的等式解应用题时,要几步?第(1)题列含有未知数j的等式是怎样想的?第(2)题呢?

指出列含有未知数x的等式解答应用题时,要根据题意找出数量关系式,对照着数量关系式来列出等式。

2.应用题。

粮站运来面粉96袋,运来的大米比面粉多24袋,运来大米多少袋?

读题后让学生想一想,这样的题用什么方法解答。学生口答算式和得数,老师板书。

提问:这道题为什么用加法算?题里的数量关系式是怎样的?

(板书:面粉的袋数+24=大米的袋数)

二、教学新课

1.出示例4,读题。

提问:例4与上面一道题有什么相同和不同的地方?

这两道题虽然有不同的地方,但相同的都是大米比面粉多24袋。想一想,例4的数量关系与上一题一样吗?

2.谁再来说一说,例4的数量关系是怎样的?为什么?

(评析:通过重复提问,可以突出例4的数量关系,便于学生列出含有未知数j的等式。提问“为什么”,有利于学生认识根据题里怎样的条件找相差关系逆叙应用题的.数量关系式。)

根据这个数量关系式,你能列出含有未知数j的等式解答例4吗?

第一步先做什么?(板书设未知数x,并说明注意写“解”字。)

第二步要做什么?列出怎样的等式?(板书:x+24=120)

第三步求未知数x的值要怎样算?(学生口答,老师板书,说明求出x的值不带单位名称)你是怎样想的?

写出答句。

3.你能根据题意,检验这样解答是否正确吗?谁来告诉大家,的面粉有24袋。120一x=24)

追问:为什么可以列这样的等式?

怎样求未知数工?(学生口答,老师板书,并写出答句)

5.提问:今天学习的也是用什么方法来解答应用题?(板书课题)例4可以列几种等式来解答?这两个等式都是根据什么列出来的?

指出:列含有未知数j的等式解答应用题的关键,是根据题意想数量关系式。这样才能对照数量关系式列出含有未知数x的等式。

想一想,例4是根据题里什么条件来想数量关系式,列含有未知数x的等式的?

三、巩固练习

1、根据下面的条件说一说数量关系式。

(1)鸡比鸭多30只。

(2)杨树比柳树少15棵。

(3)美术班比舞蹈班少16人。

(4)今年收的小麦比去年多1500千克。

2、做“练一练”。

(1)完成第(1)题。

读题。提问数量关系式。

指名一人板演,其余学生做在练习本上。

集体订正。提问:这里的等式是根据什么来列的?

(2)完成第(2)题。

读题。让学生先说数量关系式。

学生做在练习本上。然后学生口答,老师板书。

提问:列等式时你是怎样想的?

强调:像上面这样的几道题,都要先根据题里“谁比谁多或少多少”想数量关系式,再对照数量关系式列出等式来解答。

3、练习十二第5题。

说明要求,让学生在课本上练习。

提问:第(1)题是根据怎样的数量关系式来列等式的?第(2)题呢?

四、课堂小结

列含有未知数工的等式解答应用题,要分几步做?要根据什么来列含有未知数工的等式?解题时要注意什么?

五、课堂作业

练习十二第6—7题。

比和比的应用教案 篇13

一、复习引入

1.回忆列方程解决问题的一般步骤。

学生小组内交流。

2.在横线上写出含有字母的式子。

(1)明明写了a个生字,红红写的字比明明写的3倍还多5个。红红写了(x)个生字。

(2)男生x人,女生比男生人数的1.5倍少8人。女生有(x)人。

学生独立思考后,指名回答。

二、讲授新知

1. 导入。

教师:西安是我国有名的历史文化名城,有许多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。(多媒体出示西安大雁塔和小雁塔图片)这节课,就让我们一起来研究一个与它们有关的数学问题。(多媒体出示教材第9页例8)

2.探究新知。

(1)分析题旨、提出问题

教师:仔细观察,认真分析,题目中告诉了我们哪些条件?需要我们解决什么问题?

学生认真读题,分析题意,全班交流。

教师:根据你的分析,能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?

学生独立思考,全班交流汇报。

(2)找等量关系。

教师:你能用一个等量关系式来表示它们之间的相等关系吗?

小组合作,全班交流。

多媒体出示各种等量关系式的情况:

①小雁塔的`高度×2-22=大雁塔的高度。

②小雁塔的高度×2=大雁塔的高度+22。

③小雁塔的高度×2-大雁塔的高度=22。

④(大雁塔的高度+22)÷2=小雁塔的高度。

教师在充分肯定学生能从不同的角度分析题中数量关系的基础上,引导学生比较最后一种想法与前面几种想法的不同。然后着重引导学生观察第一个等量关系。

教师:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?

指名学生回答。

(3)引导列出方程。

教师:通过我们的观察与交流,你觉得可以用什么方法来解决这个问题?

学生独立思考,全班交流。

教师:根据等量关系式,你们能列出方程吗?

学生先自主尝试设未知数,并根据第一个等量关系式列出方程,全班交流,教师板书。

解:设小雁塔高x米。

2x-22=64

(4)自主思考、解方程。

教师:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?怎样将这个方程变形为我们以前学过的方程?

小组合作探究,全班交流。

通过交流使学生明确:首先把2x 看出一个整体,先求出2x等于多少,所以可以应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。

教师和学生一起完成例题呈现的方程两边同时“+22”的步骤,让学生继续独立解答,求出方程的解。

组织交流解方程的整个过程,并完整板书。

解:设小雁塔高 x米。

2x-22=64

2x-22+22=64+22

2x=86

x=43

(5)引导检验、培养习惯。

教师:你打算怎样对这道题进行检验?

学生各自检验,指名汇报检验方法。

教师:列方程解决实际问题检验答案是否正确,不光要检验结果是不是方程的解,还要把答案作为已知条件,看能不能满足题目中的数量关系。

3.内化理解、触类旁通。

教师:根据等量关系还可以怎样列方程解决?

学生独立列出方程后,在小组内交流各自列的方程,并说说列方程的依据。

集体交流,然后说说怎样来解自己的方程。

4.对比归纳、掌握方法。

教师:刚才我们通过列方程解决了一个实际问题,我们来一起看看这几种列方程的方法,你觉得那种比较简便?为什么?

小组交流,明确:顺着题意来列方程比较简便。

三、巩固应用

(一)预习答疑

这道题里数量关系有多种,但我们一般用求和的关系式即“看了的页数+剩下的页数= 一共看的”,这样在解方程时比较方便。

(二)教材习题

1.教材第10页“练一练”。

引导学生顺着题意写着关系式,再依据关系式列方程解方程。学生独立完成,选1人板演,教师巡视辅导,针对共性讲评。(解:设香港青马大桥全长大约x千米。x×16+0.8=36 x=2.2)

2. 教材第11页练习二第5题。

独立解答,集体讲评,每道题选一名学生说一说解题思路。(x=9 x=0.3 x=3.8 )

3. 教材第11页练习二第6题。

学生直接填空,全班交流。(3x+15 4x-80)

4.教材第11页练习二第7题。

学生独立完成,教师巡视辅导,集中讲评。(讲评: 解:设猫的最快时速是x千米。2x+20=110 x=45)

5.教材第11页练习二。第8题。

学生独立完成,教师巡视辅导,集中讲评。(讲评:解:设水星绕太阳一周大约要用x天。4x-13=365 x=94.5)

(三)课堂作业

完成第三部分习题设计“课堂作业”第1、3题。

学生在作业纸上直接写出答案,教师让做错的同学说一说思路,予以专门辅导。

四、总结提升

1.我们今天继续学习了列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?

2.解方程解实际问题时应注意什么?你有哪些收获?还有哪些困惑?

五、布置作业

完成第三部分习题设计“课后作业”第5、6、7题。

设计意图:学习新知识以前,进行两个内容的准备性练习,为新课做好铺垫,为下一步学习新知识做好准备。

设计意图:用图文结合的方式展示信息,使数学学习和对历史景观的了解有机融合,增强了学生的探索兴趣,激发学生全身心地投入到问题的研究中去。

设计意图:找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题,这是解决问题的关键一步。通过小组合作交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系,从而灵活地解决问题。

设计意图:以解决问题为载体,引导学生在解决问题的过程中逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。

设计意图:设计引导学生掌握解决实际问题检验的方法,养成自觉检验的习惯。是为了在引导学生掌握数学知识的同时,注意处理好智力培养与习惯养成的关系,着眼于全面素质的培养和提高。

设计意图:在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,方法并不是越多越好,这里不是要求学生一题多解。教学中要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同,进而进一步优化方法。

比和比的应用教案 篇14

一、管理信息

课程名称:应用文写作批 准 人:范守才 课程代码: 所属系部:旅游系 制 定 人:李静 制定时间:20xx.9.3

二、基本信息

课程类型:公共基础课学 分:2 必 修 课:是 学 时:36 选 修 课:否 授 课 对 象:12烹饪一、二、三班

三、课程设计

1、 课程目标设计

2、课程内容设计

3、能力训练项目设计

4、教学进度表设计

比和比的应用教案 篇15

教学内容:教材第24页例11

教学目标:

1、进一步加深对“倍”的含义的理解。

2、学会解答求一个数的几倍是多少的应用题,并能够正确进行解答。

3、初步学会分析数学信息与所求问题的联系,学会看线图。

4、培养学生动脑、动手、动口能力.

教学重点:

1、学会解答求一个数的几倍是多少的应用题,并能够正确进行解答。

2、初步学会分析数学信息与所求问题之间的联系,学会看线段图。

教学难点:

理解题目中关于两个数量之间倍数关系的语句。

教具学具准备

口算卡片、小黑板、投影仪、圆片。

教学过程:

一、复习旧知,知识迁移

1.出示口算卡片抢答.

2.口述算式和得数(出示投影片).

(1)3个2的和是多少?

(2)5个7的和是多少?

(3)2个5可以说成5的( )倍。

(4)3个4可以说成4的( )倍。

(数学教材本身具有很强的系统性,旧知是新授的前提与基础,新授是旧知的扩展与深化。,旧知复习是一种铺垫和前导,发挥着促进学生顺利理解和掌握新授内容的作用。)

3.导入新课

(1)学生摆圆片,第一行摆2个,第二行摆4个.

指导学生明确第一行摆2个圆片,第二行摆4个圆片,摆了2个4,所以第二行圆片的'个数是第一行的2倍.

板书课题 求一个数的几倍是多少的应用题

二、探究新知.

教学例4同类的应用题(小黑板)

郭晓翔今年12岁,刘老师的年龄是郭晓翔的3倍,刘老师今年多大年龄?

(1)学生读题,理解题意.

(2)引导学生找已知条件并板书:

已知条件:郭晓翔今年12岁

刘老师的年龄是郭晓翔的3倍

求得问题:刘老师今年多大年龄?

(3)教师提示:刘老师的年龄是郭晓翔的3倍,也就是刘老师的年龄是3个12,为了加深理解,今天我们用线段图来表示题意,用一条线段表示郭晓翔今年12岁,用3个线段的长表示刘老师的年龄,教师板书并同时演示 “应用题”画线段图.

(4)从线段图上你知道了什么?

引导学生明确:刘老师的年龄是郭晓翔的3倍,刘老师年龄大,郭晓翔年龄小,求刘老师的年龄也就是求3个12或12的3倍是多少.

(5)启发学生回答计算过程,并引导学生口述解题思路.

(教学中没有运用课本上的例题,而是选择了学生与老师年龄来讲授同类的知识,使学生意识到,在他们周围的某些事物中存在着数学问题,养成有意识地用数学眼光观察和认识事物的习惯。同时也为了激发聋生学习数学的浓厚兴趣。)

4.完成81页“做一做”的第2题.

妈妈买了4米白布,买花布的米数是白布的3倍,买了多少米花布?

(1)引导学生读题,找出已知条件和所求问题.

(2)通过移动投影片出示线段图,帮助学生分析题意和数量关系.

(3)学生列式计算.

三、全课总结.

通过学习知道了求一个数的几倍是多少,就是求几个这个数的和,用乘法计算.

四、随堂练习.

列式计算

(1)2个7相加是多少?

(2)7的2倍是多少?

(3)3个6相加是多少?

(4)6的3倍是多少?

五、布置作业.

1、小波有5元钱,小翔的钱是小波的3倍.小翔有多少钱?

2、旬阳县阳光学校男生人数是女生人数的3倍,女生有18人,男生有多少人?

3、旬阳县阳光学校有4个篮球,足球的个数是篮球的4倍,足球有多少个?

4、圆珠笔每支2元,钢笔的价钱是圆珠笔的6倍,钢笔每支多少钱?

(在给学生布置作业时,我往往会费一番心思,选择一些开放性的作业。使学生真切地体验到“生活离不开数学”,“生活中处处有数学”,运用数学知识能解决生活中许多实际问题,让学生体会到学数学“真管用”,提高学生学习数学的兴趣。促进学生观察生活、体验生活,从中发现问题,进而去解决问题,增进学生数学应用意识,提高解决实际问题的能力。)

教学反思:

1.教师将学生的生活与数学学习结合起来,使数学知识“生活化”。所谓“生活化”,即在数学教学中,从学生的生活经验和己有的知识背景出发,联系生活讲数学,把生活经验数学化,数学问题生活化,体现“数学源于生活,寓于生活,用于生活”的思想以此来激发学生学习数学的兴趣,从而对数学产生亲切感,增强了学生对数学知识的应用意识,培养学生的自主创新解决问题的能力。

2.数学学习是与生活实际密切相关的,让学生接触社会,贴近生活,给学生生活化的练习,才能更好地使他们了解数学知识在实际生活和工农业生产中的运用。理解“数学来源于生活,又服务于生活”这句话的深刻含义,形成学以致用、学为所用的思想,真正体会到学习“必须与生产劳动相结合”,并逐步提高用数学的眼光看待生活,增强应用意识及提高解决生活问题的效率。