数学公式的人生哲言(集锦十九篇)_数学公式的人生哲言
发布时间:2023-03-27数学公式的人生哲言(集锦十九篇)。
⬘ 数学公式的人生哲言 ⬘
小学常用数学公式汇编
数学是一门基础学科,必须打好基础,为同学们特别提供了小学常用数学公式,希望对大家的学习有所帮助!
小学常用数学公式积累
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
本文就是我们为广大同学准备的小学常用数学公式,希望可以为大家的数学学习起到一定作用!
⬘ 数学公式的人生哲言 ⬘
小学数学常用数学公式汇总
小学数学加减乘除运算计算公式
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
⬘ 数学公式的人生哲言 ⬘
数学的思维方式1.函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。
数学的思维方式2.数形结合思想
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-(((1,1)四点的.距离,就可以求出它的最小值。
数学的思维方式3.分类讨论思想
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。
数学的思维方式4.方程思想
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
另外,还有归纳类比思想、转化归纳思想、概率统计思想等数学思想,例如利用归纳类比思想可以对某种相类似的问题进行研究而得出他们的共同点,从而得出解决这些问题的一般方法。转化归纳思想是把一个较复杂问题转化为另一个较简单的问题并且对其方法进行归纳。概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。
数学公式记忆方法
数学公式组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
数学公式2、《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
数学公式3、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
⬘ 数学公式的人生哲言 ⬘
初中数学公式汇总
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
对应角相等
有两边和它们的夹角对应相等的两个三角形全等
有两角和它们的夹边对应相等的两个三角形全等
有两角和其中一角的对边对应相等的两个三角形全等
有三边对应相等的两个三角形全等
有斜边和一条直角边对应相等的两个直角三角形全等
27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29角的平分线是到角的两边距离相等的所有点的集合
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
底边上的中线和底边上的高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
相关阅读初中数学公式、定理汇总之二初中数学公式、定理汇总之三初中数学公式、定理汇总之四初中数学公式、定理汇总之五
⬘ 数学公式的人生哲言 ⬘
全长=株距×株数
株距=全长÷株数
如果在非封闭线路的`两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
小学数学图形计算公式
1.正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a
2.正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
3.长方形C周长S面积a边长 周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab
4.长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh
5.三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高
6.平行四边形s面积a底h高面积=底×高s=ah
7.梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷2
8.圆形S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏
9.圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径
10.圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数
单位换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1吨=1000千克1千克=1000克=1公斤=1市斤
(5)1公顷=10000平方米1亩=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
1.
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6
加数+加数=和
和-一个加数=另一个加数
7
被减数-减数=差
被减数-差=减数
差+减数=被减数
8
因数×因数=积
积÷一个因数=另一个因数
9
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
⬘ 数学公式的人生哲言 ⬘
数学公式
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
数列:
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
解三角形:
正弦定理
a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理
b*2=a*2+c*2-2accosB 注:角B是边a和边c的夹角
平面图形计算公式
弧长计算公式:L=n π r/180
扇形面积公式:s扇形=nπr*2/360=lr/2
正n边形的每个内角都等于(n-2)×180°/n
正n边形的面积Sn=pnrn/2 p表示正n边形的周长
正三角形面积√3a/4 a表示边长
秦九韶三角形中线面积公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
(其中Ma,Mb,Mc为三角形的中线长.)
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径= 圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积= (长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)的体积=底面积×高
立体图形面积、体积计算公式
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h
方程
一元二次方程的解:
-b+√(b2-4ac)/2a, -b-√(b2-4ac)/2a
根与系数的关系 x1+x2=-b/a, x1Xx2=c/a 注:韦达定理
判别式 b*2-4a=0 注:方程有相等的两实根
b*2-4ac>0 注:方程有一个实根
b*2-4ac<0 注:方程无实数根
b*2-4ac=0 注:有两个相同实数根
圆
圆的标准方程 (x-a)*是圆心坐标 圆的一般方程 x*2+y*2+Dx+Ey+F=0 注:D*2+E*2-4F>0
⬘ 数学公式的人生哲言 ⬘
它是一个很特别的朋友,当我的题目不会时,它就会立刻伸出援手,帮助我脱离困境。它是谁呢?它就是大家算数学公式时,一定会用到的公式。
一开始的我,并不是很喜欢用公式计算数学,因为每次在听老师说明体积和面积的公式时,我就觉得很麻烦,一下子乘以高,一下又要乘以宽,搞得我一个头两个大,而且公式只要不小心记错了,后面的计算过程就全盘错误。
有时我觉得公式像一颗颗黏在一起的地雷,只要引爆了其中一颗地雷,其它的地雷也会跟着引爆,所以每次在运用公式计算时,我都得特别小心。
虽然在运用公式计算时,要特别小心。但公式也并非我想象中那么可怕,只要背熟公式、小心计算,很多数学问题都可以借着数学公式迎刃而解。当公式成为你最好的朋友时,它就可以为你解决许多问题,同时它也会成为你解题的小助手喔!相信有一天你也会和我一样爱上数学公式的。
⬘ 数学公式的人生哲言 ⬘
高一数学公式集合
一般数列的通项求法
一般有:
an=Sn-Sn-
累和法(an-an-。
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
特别的:
在等差数列中,总有Sn S2n-Sn S3n-S2n
2(S2n-Sn)=(S3n-S2n)+Sn
即三者是等差数列,同样在等比数列中。三者成等比数列
不动点法(常用于分式的通项递推关系)
特殊数列的通项的写法
1,2,3,4,5,6,7,8....... ---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
9,99,999,9999,99999,......... ------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
数列前N项和公式的'求法
(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即Sn=a1+a2+...+an;
那么Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法3 倒序相加法
(二)1.等比数列:
通项公式an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1),am=a1*q^(m-1)
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则am×an=ap×aq
2.等比数列前n项和
设a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下2 累乘法3 错位相减法 4 倒序求和法5 裂项相消法
⬘ 数学公式的人生哲言 ⬘
小学数学公式汇编
长度单位换算
1千米=1000米1米=10分米
1分米=10厘米1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒
小学数学几何形体周长面积体积计算公式
×2C=(a+b)×2
2、正方形的周长=边长×4C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a=a
5、三角形的面积=底×高÷2S=ah÷2
6、平行四边形的面积=底×高S=ah
×高÷h÷2
8、直径=半径×2d=2r半径=直径÷2r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr
圆的面积=圆周率×半径×半径
定义定理公式
三角形的面积=底×高÷2。公式S=a×h÷2
正方形的面积=边长×边长公式S=a×a
长方形的面积=长×宽公式S=a×b
平行四边形的面积=底×高公式S=a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的.圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
⬘ 数学公式的人生哲言 ⬘
1每份数份数=总数
总数每份数=份数
总数份数=每份数
21倍数倍数=几倍数
几倍数1倍数=倍数
几倍数倍数=1倍数
3速度时间=路程
路程速度=时间
路程时间=速度
4单价数量=总价
总价单价=数量
总价数量=单价
5工作效率工作时间=工作总量
工作总量工作效率=工作时间
工作总量工作时间=工作效率
6加数+加数=和
和-一个加数=另一个加数
7被减数-减数=差
被减数-差=减数
差+减数=被减数
8因数因数=积
积一个因数=另一个因数
9被除数除数=商
被除数商=除数
商除数=被除数
小学数学图形计算公式
1正方形
C周长S面积a边长
周长=边长4
C=4a
面积=边长边长
S=aa
2正方体
V:体积a:棱长
表面积=棱长棱长6
S表=aa6
体积=棱长棱长棱长
V=aaa
3长方形
C周长S面积a边长
周长=(长+宽)2
C=2(a+b)
面积=长宽
S=ab
4长方体
V:体积s:面积a:长b:宽h:高
(1)表面积(长宽+长高+宽高)2
S=2(ab+ah+bh)
(2)体积=长宽高
V=abh
5三角形
s面积a底h高
面积=底高2
s=ah2
三角形高=面积2底
三角形底=面积2高
6平行四边形
s面积a底h高
面积=底高
s=ah
7梯形
s面积a上底b下底h高
面积=(上底+下底)高2
s=(a+b)h2
8圆形
S面积C周长d=直径r=半径
(1)周长=直径=2半径
C=d=2r
(2)面积=半径半径
9圆柱体
v:体积h:高s;底面积r:底面半径c:底面周长
(1)侧面积=底面周长高
(2)表面积=侧面积+底面积2
(3)体积=底面积高
(4)体积=侧面积2半径
10圆锥体
v:体积h:高s;底面积r:底面半径
体积=底面积高3
总数总份数=平均数
和差问题的公式
(和+差)2=大数
(和-差)2=小数
和倍问题
和(倍数-1)=小数
小数倍数=大数
(或者和-小数=大数)
差倍问题
差(倍数-1)=小数
小数倍数=大数
植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长株距-1
全长=株距(株数-1)
株距=全长(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长株距
全长=株距株数
株距=全长株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长株距-1
全长=株距(株数+1)
株距=全长(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长株距
全长=株距株数
株距=全长株数
盈亏问题
(盈+亏)两次分配量之差=参加分配的份数
(大盈-小盈)两次分配量之差=参加分配的份数
(大亏-小亏)两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和相遇时间
相遇时间=相遇路程速度和
速度和=相遇路程相遇时间
追及问题
追及距离=速度差追及时间
追及时间=追及距离速度差
速度差=追及距离追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)2
水流速度=(顺流速度-逆流速度)2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量溶液的重量100%=浓度
溶液的重量浓度=溶质的重量
溶质的重量浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润成本100%=(售出价成本-1)100%
涨跌金额=本金涨跌百分比
折扣=实际售价原售价100%(折扣<1)
利息=本金利率时间
税后利息=本金利率时间(1-20%)
⬘ 数学公式的人生哲言 ⬘
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于π/2*k ±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
⬘ 数学公式的人生哲言 ⬘
人教版初中数学公式大全
以下是小编带来的人教版初中数学公式大全,欢迎阅读。
1、同旁内角互补,两直线平行
2、两直线平行,同位角相等
3、两直线平行,内错角相等
4、两直线平行,同旁内角互补
5、定理三角形两边的和大于第三边
6、推论三角形两边的差小于第三边
7、三角形内角和定理三角形三个内角的和等于180°
8、推论1直角三角形的两个锐角互余
9、推论2三角形的一个外角等于和它不相邻的两个内角的和
10、推论3三角形的一个外角大于任何一个和它不相邻的内角
11、全等三角形的对应边、对应角相等
12、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
13、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
14、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
15、边边边公理(SSS)有三边对应相等的两个三角形全等
16、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
17、定理1在角的平分线上的点到这个角的两边的距离相等
18、定理2到一个角的两边的距离相同的点,在这个角的平分线上
19、角的平分线是到角的两边距离相等的所有点的集合
20、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
22、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23、推论3等边三角形的各角都相等,并且每一个角都等于60°
24、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25、推论1三个角都相等的三角形是等边三角形
26、推论2有一个角等于60°的等腰三角形是等边三角形
27、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28、直角三角形斜边上的中线等于斜边上的一半
29、定理线段垂直平分线上的点和这条线段两个端点的距离相等
30、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32、定理1关于某条直线对称的两个图形是全等形
33、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
38、定理四边形的内角和等于360°
39、四边形的.外角和等于360°
40、多边形内角和定理n边形的内角的和等于(n-2)×180°
41、推论任意多边的外角和等于360°
42、平行四边形性质定理1平行四边形的对角相等
43、平行四边形性质定理2平行四边形的对边相等
44、推论夹在两条平行线间的平行线段相等
45、平行四边形性质定理3平行四边形的对角线互相平分
46、平行四边形判定定理1两组对角分别相等的四边形是平行四边形
47、平行四边形判定定理2两组对边分别相等的四边形是平行四边形
48、平行四边形判定定理3对角线互相平分的四边形是平行四边形
49、平行四边形判定定理4一组对边平行相等的四边形是平行四边形
50、圆是定点的距离等于定长的点的集合
51、圆的内部可以看作是圆心的距离小于半径的点的集合
52、圆的外部可以看作是圆心的距离大于半径的点的集合
53、同圆或等圆的半径相等
54、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
55、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
56、到已知角的两边距离相等的点的轨迹,是这个角的平分线
57、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
58、定理不在同一直线上的三点确定一个圆。
59、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
60推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
61、推论2圆的两条平行弦所夹的弧相等
62、3圆是以圆心为对称中心的中心对称图形
63、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
64、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
65、定理一条弧所对的圆周角等于它所对的圆心角的一半
66、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
67、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
68、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
69、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
70、①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
71、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
72、切线的性质定理圆的切线垂直于经过切点的半径
73、推论1经过圆心且垂直于切线的直线必经过切点
74、推论2经过切点且垂直于切线的直线必经过圆心
75、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
76、圆的外切四边形的两组对边的和相等
77、弦切角定理弦切角等于它所夹的弧对的圆周角
78、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
79、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
80、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
81、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
82、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
83、如果两个圆相切,那么切点一定在连心线上
84、定理相交两圆的连心线垂直平分两圆的公共弦
⬘ 数学公式的人生哲言 ⬘
倒数关系:
tancot=1
sincsc=1
cossec=1
商的关系:
sin/cos=tan=sec/csc
cos/sin=cot=csc/sec
平方关系:
sin^2()+cos^2()=1
1+tan^2()=sec^2()
1+cot^2()=csc^2()
⬘ 数学公式的人生哲言 ⬘
1.正比例与反比例
商定变量成正比,积定变量成反比。
2.正比例与反比例
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
3.判断四数成比例
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
4.判断四式成比例
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
5.比例中项
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
⬘ 数学公式的人生哲言 ⬘
小学数学常用数学公式汇编
在孩子们的小学数学知识学习中,有很多的基础知识,是孩子们在熟知公式的情况下进行学习的`。下面是为大家分享的常用数学公式,希望对大家有帮助!
一、基础运算公式:
1.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2.1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3.速度×时间=路程路程÷速度=时间路程÷时间=速度
4.单价×数量=总价总价÷单价=数量总价÷数量=单价
5.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6.加数+加数=和和-一个加数=另一个加数
7.被减数-减数=差被减数-差=减数差+减数=被减数
8.因数×因数=积积÷一个因数=另一个因数
9.被除数÷除数=商被除数÷商=除数商×除数=被除数
二、数量关系计算公式:
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
⬘ 数学公式的人生哲言 ⬘
【两角和公式】
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
【三角和的三角函数】
sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγ
cos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)
【积化和差】
sin(a)sin(b)=-1/2__[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2__[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2__[sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2__[sin(a+b)-sin(a-b)]
因式分解公式
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a平方+2ab+b平方
完全平方差公式: (a-b)平方=a平方-2ab+b平方
两根式: ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]两根式
立方和公式: a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3.
⬘ 数学公式的人生哲言 ⬘
小学数学公式汇总
今天小编给家长们带来一份小学数学公式汇总,赶紧收藏起来吧,让你家的孩子好好学习学习吧!
一、几何公式
1.长方形的周长=(长+宽)×2
C=(a+b)×2
2.长方形的面积=长×宽
S=ab
3.正方形的周长=边长×4
C=4a
4.正方形的面积=边长×边长
S=a×a
5.三角形的面积=底×高÷2
S=ah÷2
6.三角形的内角和=180度
7.平行四边形的面积=底×高
S=ah
8.梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
9.圆的直径=半径×2(d=2r)
10.圆的半径=直径÷2(r=d÷2)
11.圆的周长=圆周率×直径=圆周率×半径×2
C=π×d=2πr
12.圆的面积=圆周率×半径×半径
S=π×r×r
13.长方体的体积=长×宽×高
V=abh
14.正方体的体积=棱长×棱长×棱长
V=aaa
15.圆柱的侧面积:圆柱的侧面积等于底面的周长乘高
S=ch=πdh=2πrh
16.圆柱的表面积:圆柱的`表面积等于底面的周长乘高再加上两头的圆的面积
S=ch+2s=ch+2πr×r
17.圆柱的体积:圆柱的体积等于底面积乘高
V=Sh
18.圆锥的体积=1/3底面×积高
V=1/3Sh
二、单位的换算
1公里=1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
20.1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
21.1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克
1千克=1000克=1公斤=2市斤
1公顷=10000平方米
1亩=666.666平方米
1升=1立方分米=1000毫升
1毫升=1立方厘米
1元=10角
1角=10分
1元=100分
1世纪=100年
1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时
1时=60分=3600秒1分=60秒小学数学公式汇总,妈妈请为孩子收藏起来
三、数量关系
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
加数+加数=和
和-一个加数=另一个加数
被减数-减数=差
被减数-差=减数
差+减数=被减数
因数×因数=积
积÷一个因数=另一个因数
被除数÷除数=商
被除数÷商=除数
商×除数=被除数小学数学公式汇总,妈妈请为孩子收藏起来
四、特殊问题
相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间
追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间
流水问题(1)一般公式:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量
利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%) 1每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 21倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3速度×时间=路程路程÷速度=时间路程÷时间=速度 4单价×数量=总价总价÷单价=数量总价÷数量=单价 5工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6加数+加数=和和-一个加数=另一个加数 7被减数-减数=差被减数-差=减数差+减数=被减数 8因数×因数=积积÷一个因数=另一个因数 9被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1正方形C周长S面积a边长 周长=边长×4C=4a 面积=边长×边长S=a×a 2正方体V:体积a:棱长 表面积=棱长×棱长×6S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3长方形C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4长方体V:体积s:面积a:长b:宽h:高 表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) 体积=长×宽×高V=abh 5三角形s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高 6平行四边形s面积a底h高 面积=底×高s=ah 7梯形s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形S面积C周长∏d=直径r=半径 周长=直径×∏=2×∏×半径C=∏d=2∏r 面积=半径×半径×∏ 9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长 侧面积=底面周长×高表面积=侧面积+底面积×2 体积=底面积×高体积=侧面积÷2×半径 10圆锥体v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 和差问题的公式 (和+差)÷2=大数(和-差)÷2=小数 和倍问题的公式 和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式 差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题的.公式 1非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘只有计算方法,没有简便公式的,只能硬算。 例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。 任何大于1的自然数n阶乘表示方法: n!=1×2×3×……×n 或 n!=n×(n-1)! n的双阶乘: 当n为奇数时表示不大于n的所有奇数的乘积 如:7!!=1×3×5×7 当n为偶数时表示不大于n的所有偶数的乘积(除0外) 如:8!!=2×4×6×8 小于0的整数-n的阶乘表示: (-n)!= 1 / (n+1)! 以下列出0至20的阶乘: 0!=1,注意(0的阶乘是存在的) 1!=1, 2!=2, 3!=6, 4!=24, 5!=120, 6!=720, 7!=5,040, 8!=40,320 9!=362,880 10!=3,628,800 11!=39,916,800 12!=479,001,600 13!=6,227,020,800 14!=87,178,291,200 15!=1,307,674,368,000 16!=20,922,789,888,000 17!=355,687,428,096,000 18!=6,402,373,705,728,000 19!=121,645,100,408,832,000 20!=2,432,902,008,176,640,000 另外,数学家定义,0!=1,所以0!=1!⬘ 数学公式的人生哲言 ⬘
⬘ 数学公式的人生哲言 ⬘
一起合同网小编为您推荐数学公式的人生哲言专题,欢迎访问:数学公式的人生哲言