交警二次转正考核个人总结|交警二次转正考核个人总结(通用10篇)
发布时间:2020-02-21交警二次转正考核个人总结(通用10篇)。
一. 交警二次转正考核个人总结
甲方(托运方):
身份证号:
家庭住址:
电话号码:
乙方(承运方):
身份证号:
家庭住址:
电话号码:
甲方因工程建设需求,委托乙方承担其塔材的二次运输。根据《中华人民共和国合同法》及其他有关法律、法规、规章,甲乙双方遵循平等自愿、公平公正、诚实守信的原则,经协商一致签订本合同,供双方共同遵守。
一、运输标的物
运输标的物:
二、运输起止点
__________________。
三、运费计价
1、运输单价(含上下车):砂石______元/m3(/m3);
2、运费总价:运输单价×实际运达砂石数(按设计图纸混凝土浇筑方量水泥、钢筋、模板、水、地脚螺栓不单独计价)。
四、运费结算
甲方于所有砂石、塔材(包括但不限于水泥、钢筋、模板、水、地脚螺栓)全部运输完后个工作日内以转账方式向乙方付清全部运费。
按甲、乙双方协商要求,如乙方未按甲方要求运完所有砂石、塔材(包括但不限于水泥、钢筋、模板、水、地脚螺栓)中途退场的乙方同意甲方拒绝支付一切费用。
五、合同有效期效
自签订之日起至______年______月______日止;
六、甲方的权利和义务
1、甲方权利
1.1、有权根据工程进度、乙方情况制定运输计划,通知乙方执行。
1.2、有权按照相关工作标准(如运输对象、运输量、时间限制、交货地点、运输质量、安全要求等)对乙方进行监督检查,并根据实际情况合理改变相关工作标准(如改变运输对象、运输量、时间限制、交货地点等)。
1.3、有权对乙方参与运输的马帮、人员证件及保险完备情况进行检查,并拒绝未经甲方审核确认的人员参与运输。
1.4、对乙方违反本合同相关规定,且情节严重的,甲方有权单方面解除本合同,并拒绝支付相关费用,要求乙方赔偿相关损失、承担相关责任。
2、甲方义务
2.1、应制定运输计划,并提前通知乙方。
2.2、应按照本合同约定向乙方支付运输费用。
七、乙方的权利和义务
1、乙方权利
1.1、有权要求甲方提前告知运输计划。
1.2、有权要求甲方按照本合同约定支付运输费用。
2、乙方义务
2.1、应服从甲方货物运输计划,及时、准确、安全、保质、保量将货物运送到甲方指定地点。
2.2、应服从甲方按照相关工作标准(如运输对象、运输量、时间限制、交货地点、运输质量、安全要求等)进行的监督检查,以及根据实际情况对相关工作标准做出的合理改变(如改变运输对象、运输量、时间限制、交货地点等)。
2.3、应保证参与运输人员、车辆证件及保险资料齐全,并按照甲方要求送复印件给甲方备案。
2.4、若因运输人员或车辆不足,或调度不力造成运输停滞的,必须按照甲方要求增加、改正。拒绝增加、改正的,甲方有权拒绝支付相关费用并要求赔偿相关损失、承担相关责任。
2.5、应自觉做好货物运输过程中的一切安全防护,包括检查人员及车辆安全状况、道路安全状况等。如运输人员和车辆在货物运输过程中发生安全事故均由乙方自行承担其经济损失和法律责任(包括但不限于给甲方货物或其他第三方造成的经济损失和法律责任)。
2.6、自行承担参与运输人员的生活费和车辆的燃油费、以及人员工资。
2.7、保证货物在运输过程中不发生丢失、损坏。如有发生,给甲方造成的一切经济损失均由乙方负责照价赔偿。
2.8、保证货物及时、准确送达交货地点。如因错运或延误,给自身造成的一切经济损失概由乙方自行承担。
2.9、非甲方书面同意,乙方不得再次将本合同约定的承运业务转包或分包。否则,甲方有权单方面解除本合同,由此产生的一切经济损失和法律责任均由乙方自行承担。
八、争议解决方式
本合同未尽事宜应由甲乙双方友好协商解决。若协商不成的,任何一方均可向当在地人民法院提起诉讼或仲载。
九、合同份数及生效
本合同一式贰份,经甲、乙双方签字并摁手印后生效。双方各执壹份,具有同等法律效力。
甲方(签字手印):______联系电话:______
乙方(签字手印):______联系电话:______
签订日期:______年______月______日
二. 交警二次转正考核个人总结
一、引言
遴选转正考核是企业中常见的重要流程之一,它关系到个人发展、企业稳定以及职业晋升等多个因素,因此值得深入探究。本文将从个人角度出发,从四个方面进行总结和探讨,旨在对遴选转正考核提供一些参考和帮助。
二、工作经验
第一次参加遴选转正考核时,我感到非常的慌张和紧张。随着多次经历,我逐渐意识到:经验和技能是提高遴选转正考核成功率最重要的因素之一。因此,我一直注重平时业务的学习和积累,可以通过网络学习、查阅资料和经验传承等渠道,不断提升自己的专业技能和经验。同时,我还尽可能地参与各种项目或者团队合作,积累工作经验和成果,确保能够在遴选转正考核中表现出色。
三、自我评价
在遴选转正考核中,自我评价是一个非常重要的环节。通过自我评价,展现出个人在工作中的成果和经验,全面呈现出自己的优点和不足。作为考核人员,应该要坦诚地评价自己,并且不能掩盖缺点或者虚报工作成果。
对于自我评价这段时间,我会认真总结自己的工作经验和工作成果,尽可能客观地评价自己的优缺点,并且针对缺点制定改进计划,最终更好地展现自己。
四、团队合作
即使是个人遴选转正考核,团队合作也是非常重要的。毕竟,一个人的成绩背后,一定离不开团队的支持和配合。在团队中,我要尽量避免个人主义,积极倾听团队成员的意见和建议,协调好各个环节的工作,确保项目进展顺利。另外,还可以通过协作学习和技能交流深入理解团队成员人性特点,提高个人协作能力和团队合作精神。
五、积极沟通
在遴选转正考核过程中,积极沟通也是非常重要的。通过与上司和同事进行深入的沟通,了解自己的优缺点和工作需求,随时展现自己的工作情况,并且提出有构建性的建议和方案,这些都能够让流程更加顺利和完善,持续推动个人职业发展 。
六、结尾
遴选转正考核个人总结需要对个人进行考核和评估,从而确定个人在企业中的发展和职位地位。不仅如此,个人总结还可以帮助个人认识自己,充分调动自己的工作热情,不断学习和提高,进一步完善自己的职业生涯发展规划。通过以上几个方面的提升和改善,相信自己能够渐入佳境,并在今后的职场中获得更多的机会和认可。
三. 交警二次转正考核个人总结
第1篇:二次根式的乘法说课稿
二次根式的乘法说课稿
一、教学目标
1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。
2、会进行简单的二次根式的乘法运算。
3、使学生能联系几何课中学习的勾股定理解决实际问题。
二、教学重点和难点
1、重点:会利用积的算术平方根的性质化简二次根式。
2、难点:二次根式的乘法与积的算术平方根的关系及应用。
重点难点分析:
本节的`教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。
本节难点是二次根式的乘法与积的算术平方根的关系及应用。积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。综合应用性质或乘法公式时要注意题目中的条件一定要满足。
三、教学方法
从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。
1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2、积的算术平方根的性质和比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学过程
(一)引入新课,观察例子得到结果
类似地可以得到:
由上一节知道一般地,有=(a,b)
通过上面的例子,大家会发现=(a,b)也成立
(二)新课
积的算术平方根。
由前面所举特殊的例子,引导学生总结出:一般地,有(a≥0,b≥0)。
积的算术平方根,等于积中各因式的算术平方根的积。
要注意a≥0、b≥0的条件,因为只有a、b都是非负数公式才能成立,这里要启发学生为什么必须a≥0、b≥0。在本章中,如果没有特别说明,所有字母都表示正数,下面启发学生从运算顺序看,等号左边是将非负数a、b先做乘法求积,再开方求积的算术平方根,等号右边是先分别求a、b的两因数的算术平方根,然后再求两个算术平方根的积。根据这个性质可以对二次根式进行恒等变形。
化简,使被开方数不含完全平方的因数(或因式):
1、2、3
说明:
1、当所得二次根式的被开方数的因数(式)中,有一些幂的指数不小于2,即含有完全平方的因式(数),我们就可利用积的算术平方根的性质,并用=a(a)来化简二次根式。
2、(a≥0,b≥0)可以推广为(a≥0,b≥0,c≥0)
化简二次根式的步骤
1、将被开方数尽可能分解出平方数;
2、应用=(a,b)
3、将平方项利用=化简
小结:
1、积的算术平方根与二次根式的乘法的互逆性;
2、灵活应用他们进行二次根式的乘法运算及化简二次根式
作业:由于本节课后习题较少,可适当补充紧贴教材的课外习题。
第2篇:二次根式的乘法说课稿这篇二次根式的乘法说课稿范文很有代表性,送给你。
《二次根式的乘法》说 课 稿
我今天的说课内容是:二次根式的乘法。下面,我将从教材分析、教学方法、教学过程、板书设计、教学评估这五个方面来对本节课进行说明。
一、教材分析
教材分析的第一部分是教材的地位及作用。
《二次根式的乘法》是人教版初中数学,九年级上册第一章的内容。《二次根式的乘法》是初中数学的重要内容之一,是《课程标准》“数与代数”的重要内容,是对七年级上册“实数”、“代数式”等内容的延伸和补充。
其次是关于学情分析。本节可的内容是在理解二次根式的定义及相关概念的基础上,进一步研究二次根式的运算,是对二次根式的简便运算。二次根式的乘法这一节的知识构造较为简单,并且,是在学生学习了平方根,立方根等内容的基础上进行的,因此,学生对算术平方根等概念已经有了初步认识,这位学生学习打下了基础,在和学生一起学习的过程中,我们要创造条件和机会,让学生发表自己的见解,发挥学生学习的主动性和积极性。
根据教学大纲和新课标的要求,结合教材和学生特点,我确定了以下三方面的教学目标:知识技能目标,能力目标,情感态度于价值观目标。
具体的说:知识技能目标包括三方面:一是使学生能够利用积的算术平方根的性质进行二次根式的简便运算;二是让学生能进行简单的二次根式的乘法运算;三是希望学生能联系几何知识解决实际问题。
能力目标即将二次根式进一步展开,解决实际问题。
情感态度与价值观即培养学生对于事物规律的观察,发现能力,激发学生的学生学习激情。
本节课的教学重点是利用积的算术平方根的性质,进行二次根式的计算和化简,积的算术平方根的性质是本节课的中心内容,也是二次根式化简和混合运算的基础。
二次根式与积的算术平方根的关系及应用是本节课的难点。我们要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系,综合应用性质和乘法公式时要注意原题中的要求一定要满足。
二、教学方法
由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此,要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要注意逐步有序的展开,在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
积的算术平方根的性质及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算具体的例子,引导他们做出一般的结论。由于归纳法是通过一些个别的,特殊的例子的研究,从表象到本质,进而猜想出一般的结论。因此,我采用了从特殊到一般总结归纳的方法,类比方法,讲授与练习相结合的方法,这种思维过程,对于初中生认识,研究和发现事物的规律有着重要作用,对
1 于培养思维品质也有重要意义。
三、教学过程设计
教学过程设计师讲好一堂课最重要的环节。新课标指出,数学教学过程是教学引导学生学习的过程,是教师和学生互动的过程,是师生共同发展的过程,为有序地,有效地进行教学,我将教学过程做如下安排:
1、温故知新,探求新知
引入的环节我安排的时间是3分钟。课堂教学首先通过两组简单的式子引入学习内容,并对先前的知识点进行回顾,我主张学生自己动手计算,肯定他们的想法,引入正题。这个环节的设计既能引导学生顺利进入学习情境,也能激发学生对新知识的学习兴趣和求职欲望,这个环节必须要有计划性地为学生铺垫新知建构。
2、讨论归纳,导入新课
这部分我那排的时间是2分钟。这里我必须要从引入时的描述性语言过渡到严谨的数学语言。通过严格的证明和推导,得出本节课的重点及难点。这一环节体现了以学生为主题,师生互相合作的教学新理念。
3、强化训练,巩固提高
针对本节课的重点难点,我给学生先后呈现了两个例题。我们在讲解例题时,不仅在于怎样解答,更在于为什么这样解答。及时对解题方法和规律进行概括,有利于发展学生的思维能力。重视课本例题,适当地堆立体进行引申,引发学生自主探寻与思考,突出例题在巩固强化中的作用,有利于学生对知识的串联,积累,加工,从而起到举一反三的效果。
4、归纳小结,作业布置
小结的重要性不容忽视,知识性的小结,能使学生尽快吸收课堂中传授的知识,这不仅仅是知识的简单罗列,也是优化知识结构,完善知识体系的有效手段。
作业的布置我主要从巩固性和发展性考虑。总的设计意图是反馈教学,巩固提高,针对学生的素质差异进行不同的任务分配。既能使学生掌握知识,又能使学有余力的同学得到提高。
四、板书设计
我的板书设计师如下,我将板书设计分成四块,有助于学生更直观,清晰地了解知识点。
五、教学评价
教学评价本身也是一种教学活动,在这个活动中,学生的知识,技能等都有很大进展,评价发出的信息可以使师生了解教与学的情况,教师和学生可以根据反馈信息修订计划,调整教学行为,从而使有效的工作达到所规定的目标,这就是评价所发挥的调节作用。本节课的教学评价,主要是重视学生的亲身体验重视以及课堂问题设计。
四. 交警二次转正考核个人总结
〖大纲要求〗
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;
3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,数学教案-二次函数。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向
抛物线y=ax2+bx+c(a≠0)的顶点是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是( )
(A)2米 (B)3米 (C)4米 (D)5米
三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分)
21.已知:直线y=x+k过点A(4,-3)。(1)求k的值;(2)判断点B(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。
22.已知抛物线经过A(0,3),B(4,6)两点,对称轴为x=,
(1) 求这条抛物线的解析式;
(2) 试证明这条抛物线与X轴的两个交点中,必有一点C,使得对于x轴上任意一点D都有AC+BC≤AD+BD。
23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O℃时长度为200cm,温度提高1℃,它就伸长0.002cm。
(1) 求这根金属棒长度l与温度t的函数关系式;
(2) 当温度为100℃时,求这根金属棒的长度;
(3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。
24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22
(1) 求S关于m的解析式;并求m的取值范围;
(2) 当函数值s=7时,求x13+8x2的值;
25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。
26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:
(1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围;
(2) 当x为何值时,S的数值是x的4倍。
27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。
(1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围;
(2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.
28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
(1) 写出A,B,C三点的坐标;
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。
习题2:
一.填空(20分)
1.二次函数=2(x - )2 +1图象的对称轴是 。
2.函数y= 的自变量的取值范围是 。
3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。
4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。
5.若y与x2成反比例,位于第四象限的一点P(a,b)在这个函数图象上,且a,b是方程x2-x -12=0的两根,则这个函数的关系式 。
6.已知点P(1,a)在反比例函数y= (k≠0)的图象上,其中a=m2+2m+3(m为实数),则这个函数图象在第 象限。
7. x,y满足等式x= ,把y写成x的函数 ,其中自变量x的取值范围是 。
8.二次函数y=ax2+bx+c+(a 0)的图象如图,则点P(2a-3,b+2)
在坐标系中位于第 象限
9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值 。
10.抛物线y=x2-(2m-1)x- 6m与x轴交于(x1,0)和(x2,0)两点,已知x1x2=x1+x2+49,要使抛物线经过原点,应将它向右平移 个单位。
二.选择题(30分)
11.抛物线y=x2+6x+8与y轴交点坐标( )
(A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)
12.抛物线y=- (x+1)2+3的顶点坐标( )
(A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)
13.如图,如果函数y=kx+b的图象在第一、二、三象限,那么函数y=kx2+bx-1的图象大致是( )
14.函数y= 的自变量x的取值范围是( )
(A)x 2 (B)x- 2且x 1 (D)x 2且x –1
15.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( )
(A)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2
16.已知抛物线=x2+2mx+m -7与x轴的两个交点在点(1,0)两旁,则关于x的方程 x2+(m+1)x+m2+5=0的根的情况是( )
(A)有两个正根 (B)有两个负数根 (C)有一正根和一个负根 (D)无实根
17.函数y=- x的图象与图象y=x+1的交点在( )
(A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限
18.如果以y轴为对称轴的抛物线y=ax2+bx+c的图象,如图,
则代数式b+c-a与0的关系( )
(A)b+c-a=0 (B)b+c-a>0 (C)b+c-a
19.已知:二直线y=- x +6和y=x - 2,它们与y轴所围成的三角形的面积为( )
(A)6 (B)10 (C)20 (D)12
20.某学生从家里去学校,开始时匀速跑步前进,跑累了后,再匀速步行余下的路程,初中数学教案《数学教案-二次函数》。下图所示图中,横轴表示该生从家里出发的时间t,纵轴表示离学校的路程s,则路程s与时间t之间的函数关系的图象大致是( )
三.解答题(21~23每题5分,24~28每题7分,共50分)
21.已知抛物线y=ax2+bx+c(a 0)与x轴的两交点的横坐标分别是-1和3,与y轴交点的纵坐标是- ;
(1)确定抛物线的解析式;
(2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。
22、如图抛物线与直线 都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=—1,与x轴交于点C,且∠ABC=90°求:
(1)直线AB的解析式;
(2)抛物线的解析式。
23、某商场销售一批名脾衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现每件衬衫降价1元, 商场平均每天可多售出2件:
(1)若商场平均每天要盈利1200元,每件衬衫要降价多少元,
(2)每件衬衫降价多少元时,商场平均每天盈利最多?
24、已知:二次函数 和 的图象都经过x轴上两个不同的点M、N,求a、b的值。
25、如图,已知⊿ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A的坐标为{—1,0),求
(1)B,C,D三点的坐标;
(2)抛物线 经过B,C,D三点,求它的解析式;
(3)过点D作DE∥AB交过B,C,D三点的抛物线于E,求DE的长。
26 某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电不超100度
时,按每度0.57元计费:每月用电超过100度时.其中的100度仍按原标准收费,超过部分按每度0.50元计费。
(1)设月用电x度时,应交电费y元,当x≤100和x>100时,分别写出y关于x的函数
关系式;
(1)求证;不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0);
(2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式;
(3)设d=10,P(a,b)为抛物线上一点:
①当⊿ABP是直角三角形时,求b的值;
②当⊿ABP是锐角三角形,钝角三角形时,分别写出b的取值范围(第2题不要求写出过程)
28、已知二次函数的图象 与x轴的交点为A,B(点B在点A的右边),与y轴的交点为C;
(1)若⊿ABC为Rt⊿,求m的值;
(1)在⊿ABC中,若AC=BC,求sin∠ACB的值;
(3)设⊿ABC的面积为S,求当m为何值时,s有最小值.并求这个最小值。
五. 交警二次转正考核个人总结
二次函数的教学设计
教学内容:人教版九年义务教育初中第三册第108页
教学目标:
1。 1。 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2。 2。 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3。 3。 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1。写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2。 ①
2。写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2 ②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,
那么,y叫做x的二次函数。
注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。
练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;; 的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三 尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1。 1。 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2。 2。 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x
-3
-2
-1
0
1
2
3
Y=x2
9
4
1
0
1
4
9
二、描点、连线: 按照表格,描出各点。然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来。
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。
练习:画出函数;的图象(请两个同学板演)
X
-3
-2
-1
0
1
2
3
Y=0。5X2
4。5
2
0。5
0
0。5
02
4。5
Y=-X2
-9
-4
-1
0
-1
-4
-
一起合同网编辑精选优秀专题:
- 二次装修合同 | 汽车二次抵押合同 | 第二次月考总结 | 房屋二次抵押贷款合同 | 交警二次转正考核个人总结 | 交警二次转正考核个人总结
-9
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。
(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)
三 运用新知、变式探究
画出函数 y=5x2图象
学生在画图象的过程当中遇到函数值较大的困难,不知如何是好。
x
-0。5
-0。4
-0。3
-0。2
-0。1
0
0。1
0。2
0。3
0。4
0。5
Y=5x2
1。25
0。8
0。45
0。2
0。05
0
0。05
0。2
0。45
0。8
1。25
教师出示已画好的图象让学生观察
注意:1。 画图象应描7个左右的点,描的点越多图象越准确。
2。 自变量X的取值应注意关于Y轴对称。
3。 对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。
四。 四。 归纳小结、延续探究
教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:
一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。
五 回顾反思、总结收获
在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。
(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)
六. 交警二次转正考核个人总结
1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。
2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。
3.教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;
4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。
七. 交警二次转正考核个人总结
近日,我作为一名武警战士,参加了转正考核。仅仅凭这一次的考核经历,我深切地感受到了考核的严肃性、庄重性和重要性。在这篇个人总结中,我将详细具体且生动地描述这个考核过程,并对自己的体会和感受进行总结。
转正考核是武警部队选拔合格士兵的重要途径,通过考核判断士兵是否具备成为合格武警的能力和素质。这次转正考核分为理论知识测试、体能测试、战术训练、心理素质测试等多个环节,考核内容全面综合,要求严格。考核前,我们参加了为期两周的集中培训,包括理论学习、战术演练、体能训练等,为考核做好了充分的准备。
首先是理论知识测试环节。我们在考核前进行笔试,考察了我们对部队重要规章制度、军事理论知识、实际工作操作规程等的掌握情况。我在这一环节中感受到了考核的严肃性和要求的全面性,也意识到了自己在理论学习方面的不足之处。通过这次考核,我激发了更大的学习动力,决心加强理论学习,为今后的工作打下坚实的基础。
其次是体能测试环节。这是一项对我们身体素质的全面考察,包括跑步、俯卧撑、引体向上等多个项目。我一直注重体能训练,通过长期坚持锻炼,我成功地完成了所有体能项目,取得了不错的成绩。在体能测试过程中,我感受到了自己身体素质的进步,也明白了体能训练的重要性。只有拥有强健的体魄,我们才能更好地履行保卫国家和人民的职责。
接下来是战术训练环节。这一环节是考核我们在实际战斗中的应变能力和危机处理能力。我们进行了实战模拟,包括隐蔽行军、射击训练、团队协作等。在这个环节中,我们需要迅速做出决策,灵活应对各种情况。我充分发挥了自己的实战能力,与队友密切配合,顺利完成了任务。这次战术训练使我更加明确了自己作为一名武警战士的责任和使命感,也让我深刻意识到团队合作的重要性。
最后是心理素质测试环节。这是一项考察我们在面对压力和困难时的心理承受能力。我们经历了高强度的心理训练,包括紧急情况应对、心理压力测试等。通过这次测试,我认识到自己在心理承受能力上还有许多提高的空间。我会在以后的工作和生活中,注重培养自己的心理素质,做到能够在逆境中保持坚韧不拔的品质。
通过这次转正考核,我深刻认识到了自己的不足之处,并对今后的工作有了更明确的要求。我将力争在今后的学习和训练中不断进步,不断提高自己的综合素质。同时,我也要更加注重团队合作,与战友们共同努力,共同进步。作为一名合格的武警战士,我将时刻保持对祖国、人民的忠诚和热爱,无论面对何种困难和压力,都会坚定不移地履行自己的职责和使命。我相信,在以后的发展中,我一定会成为一名合格的武警,为国家和人民做出自己的贡献。
八. 交警二次转正考核个人总结
一、说教材人教版九年级上册《二次根式》是《课程标准》中“数与代数”领域的重要内容。主要研究二次根式的概念和运算。在本章中,学生将学习二次根式的概念、性质、运算法则和化简的方法,通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识。学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据。本节是本章的第一节,主要学习二次根式的概念,与已学“实数”“整式”“勾股定理”等内容联系紧密,同时也是以后将要学习的“解直角三角形”“一元二次方程”和“二次函数”等内容的重要基础,并为学习函数以及解析几何等的大部分知识作好准备。本节既是相关内容的发展,同时又是后面内容的基础,因此本节起承上启下的作用。
二、说教学目标由于本节课只学习二次根式的概念,根据具体的教学内容并结合学生的实际,确定本节课的三维目标:
1、知识与技能:使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围。
2、过程与方法:体验由“特殊”到“一般”,再到“特殊”的数学推理思想,培养学生的推理能力。
3、态度情感价值关:通过练习训练,培养学生严谨的思维,一丝不苟的学习习惯。
三、说教学重、难点由于本节课只学习二次根式的概念,只有充分理解二次根式的概念,才能正确进行二次根式的化简和运算,因此确定本节课的教学重点为“对根式概念的理解及二次根式中字母的取值范围的求法”。由于二次根式的被开方数必须是非负数,运用的时候特别容易出错,因此确定本节课的教学难点为“二次根式中,较复杂的字母取值问题的讨论”。
四、说学情九年级的学生已经适应了新课程的学习,逐步接受了新课程理念。他们能够进行自主探究,合作学习,讲解问题,并能应对随时可能出现的答题质疑。并且学生多数能积极参与问题的讨论之中,愿意走向讲台占领学习的主阵地。
五、说教法学法情景创设,启发式教学,使用多媒体手段辅助教学。让学生逐步学会观察、探索、猜想、发现新知;学会从特殊到一般的数学思维;为了巩固概念,特精选了例题、练习题,通过学生动手做题,教师讲评来巩固所学知识。分组讨论,鼓励学生合作学习、培养他们探究思维能力,逻辑推理能力。变式练习,达到巩固新知的目的。分层要求,培养学生自信。六、说教学过程问题与情境师生行为设计意图复习引入
问题1:如图,要做一个两条直角边的长分别是7cm和4cm的三角尺,斜边的长应为cm;
问题2:面积为S的正方形的边长为?
问题3:要修建一个面积为6。28m2的圆形喷水池,它的半径为m(∏取3。14);
问题4:一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t= 。请同学们独立完成四个问题,老师点评设疑激趣,用问题一步步引导学生总结探索新知。由四个实际问题(三个几何问题,一个物理问题)入手,设置问题情境,让学生感受到研究二次根式来源于生活又服务于生活。给出概念很明显,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。议一议:
1、4的平方根是_____;0的平方根是______;-16的平方根是____。;5的平方根是_______;5的算术平方根是____。
2、—1有算术平方根吗?
3、0的算术平方根是多少?
4、当a<0,有意义吗?由学生自主探究,教师归纳总结并板书。学生独立完成议一议探索新知,巩固新知。先由议一议,复习平方根与算术平方根的概念,然后学生发现复习四个问题中所填结果都表示一个数的算术平方根,教师引导学生用一个式子表示这些有共同特点的式子。学生表示为,此时教师启发学生回忆已学平方根的性质让学生总结出a这一条件。在此基础上总结出二次根式的概念。学生探究问题:从形式上看,二次根式必须具备哪些条件?
1、下列式子,哪些是二次根式,哪些不是二次根式:。
2、下列各式是二次根式吗?
(m≤0),
(x,y 异号)学生思考,分小组总结,教师板书结论二次根式应满足两个条件:
第一,有二次根号“”;
第二,被开方数是正数或0.理解新知,运用新知我们在课堂教学中一般都是老师讲解例题然后学生演练,学生往往被动接受,忽略了学生为主体的教育目标。本课改为学生运用新知自主探索,教师协助指引。演练过程中学生往往不会想到代数式中字母取值的不确定性,而在代数式求值过程中忽略强调字母取值的条件,待他们板演后与同学们一起检验,对演练有误的`同学提示更正,对正确的同学加以表扬。可充分调动学生的学习积极性。
思考:
1、表示什么?是平方根,还是算术平方根?
2、的被开方式是什么?被开方式必须满足什么条件,二次根式才有意义?
3、中字母a需满足什么条件才有?
归纳:
二次根式中字母的取值范围必须满足被开方数大于等于零,二次根式才有意义首先让学生通过探究活动感受这条结论,然后再从算术平方根的意义出发,结合具体例子对这条结论进行分析,引导学生由具体到抽象,得出一般的结论,并发现二次根式有意义的条件,培养学生由特殊到一般的思维方式,提高归纳、总结的能力。
例1:x是怎样的实数时,下列各式实数范围内有意义?
先由学生独立完成,教师点拨新的课程标准,倡导把课堂变为学生自主、合作、探究的场所,呼唤学生主体性的发展。教学活动中学生在问题的基础之上逐步地得出这节课的重点内容。这样让学生感觉坡度不大,掌握起来比较容易。
课堂练习:
x取什么实数时,下列各式有意义。
例2:当x=—4时,求二次根式的值。
学生口答完成,教师给予点拨学生板演,教师巡视指导利用反馈测试,及时进行效果回授,从而达到反馈调节的目的,及时对学生某些没有学会的知识进行补救由学生板例2一题。有意识的选择平时不够细心的同学板演,就会出现因没有注意到可以使用简便算法而使计算变得很复杂的情况,这是多数同学都有可能忽略的问题,师生共同分析比较后可进一步加强学生对所学知识的感性认识。
巩固练习:
A组:xxx
B组:xxx
1、若=0,则=_____。
2、已知a、b为实数,且满足你能求出a及a+b的值吗?
3、已知有意义,那A(a,)在4、当x分别取下列值时,求二次根式象限的值:(1)x=0(2)x=1(3)x=‐1
小组合作完成,教师点拨通过这里设置的A组几个题目,进一步巩固了二次根式的概念,还加强了学生运用数学知识解决实际问题的能力。若学生配合较好,可以继续探究B组,并适当加大难度。这里共设计了四道题,前三道题既有趣味性,又复习了本节课的内容。第四题是求值题,提供给学有余力的学生,充分体现了分层教学的思想。
归纳小结本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号。
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。学生活动,老师点评教学始终贯穿“发展、创新”两个主要思想,并以训练思维为主线,重视知识的形成、发展过程,解题思路的探索过程,重视知识的概括和总结,使学生在这些过程中展开思维,从而发展他们科学精神和创新意识,形成自主、合作获取、发展新知,运用新知解决问题,以及用数学语言交流能力。
布置作业
1.教材第3页练习1、2、3。
2.可选用课时作业设计。独立完成,当堂检测检测本节掌握情况。作业注重发挥学生的主观能动性,让不同的学生都得到不同的发展。
九. 交警二次转正考核个人总结
教学目标
1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点
2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题
3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学重点和难点
重点:用三种方式表示变量之间二次函数关系
难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究
教学过程设计
一、从学生原有的认知结构提出问题
这节课,我们来学习二次函数的三种表达方式。
二、师生共同研究形成概念
1、用函数表达式表示
☆做一做书本P56矩形的周长与边长、面积的关系
鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。
比较全面、完整、简单地表示出变量之间的关系
2、用表格表示
☆做一做书本P56填表
由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。
表格表示可以清楚、直接地表示出变量之间的数值对应关系
3、用图象表示
☆议一议书本P56议一议
关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。
可以直观地表示出函数的变化过程和变化趋势
☆做一做书本P57
4、三种方法对比
☆议一议书本P58议一议
函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。
在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。
十. 交警二次转正考核个人总结
一、教学目标:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.能够利用二次函数的'图象求一元二次方程的近似根。
二、教学重点、难点:
教学重点:
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导 合作交流
四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
检查预习 引出课题
预习作业:
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
-
更多精彩交警二次转正考核个人总结内容,请访问我们为您准备的专题:交警二次转正考核个人总结